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ABSTRACT

OPTIMIZATION OF POLYNOMIAL SYSTEM SOLVERS WITH

APPLICATIONS TO VISUAL ODOMETRY

Oleg Naroditsky

Kostas Daniilidis

Efficient solutions to polynomial equation systems is an important topic in mod-

ern geometric computer vision. The importance stems from the fact that many min-

imal problems (problems that use the fewest possible number of constraints) have

been formulated as polynomial systems in recent years. Minimal problems are ex-

tremely important in geometric computer vision because they guarantee the highest

probability of rejecting outliers when used with robust estimation frameworks such

as RANSAC. However, since many instances of the same minimal problem have to

be solved in a typical live vision system, efficient solutions are paramount to reaping

full benefit from their solutions. The goal of this work is to solve new and useful

minimal geometry problems as well as advance the theory behind the solution meth-

ods. New solutions to two such minimal problems are offered and a new development

in optimizing solutions for a class of problems using the so-called “action matrix”

method is also presented. The first minimal problem that is solved is the structure

from motion with a directional correspondence, where image projections of three 3D

points in two cameras are combined with a common direction or a point at infinity

to solve for camera motion. This algorithm can be solved in closed form or using

algebraic geometry and becomes a foundation of a visual odometry algorithm that

uses a four-point RANSAC hypothesis to estimate motion instead of the traditional

five. The second minimal problem uses 3D point to plane correspondences to estab-

lish the motion between two coordinate systems and targets the problem of LIDAR

to camera calibration. A set of six correspondence of image line (a plane in 3D)

iv



to LIDAR points is sufficient to estimate the relative pose of the devices, including

scale. This problem can be solved in closed form using the Macaulay resultant, and

becomes the basis for construction of automatic calibration software. The proposed

optimization to the action matrix method leads to an improvement in performance

and numerical stability of existing algorithms, such as uncalibrated image stitching

and three-view triangulation.
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Algebraic Geometry Notation

• K – a field

• Z – the integers

• C – the complex numbers

• R – the complex numbers

• Z/p – the integer field modulo prime p

• xα = xα1
i . . . xαn

n – a monomial

• f(x1, . . . , xn) = c1x1 + . . . + cmxm – a polynomial

• K[x1, . . . , xn] – the ring of polynomials in x1, . . . , xn over field K

• K[x1, . . . , xn]/I – the quotient ring of K[x1, . . . , xn] modulo I

• f
G

– the remainder of polynomial division of f by all polynomials gi ∈ G

• I = 〈f1, . . . fk〉 – a polynomial ideal generated by {f1, . . . , fk}

• deg(I) – degree of an ideal

• dim(I) dimension K[x1, . . . , xn]/I as a vector space

• X – a vector of monomials

• CX – a polynomial system with coefficient matrix C
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Chapter 1

Introduction

Solving geometric problems is the earliest application of the field now known as com-

puter vision. Shortly after invention of practical photography by Louis Daguerre and

Nicéphore Niépce in 1837, photogrammetry was invented to employ the new tech-

nology for the useful task of measuring objects. These efforts resulted in the first

applications of mathematical methods to image interpretation. These early appli-

cations were primarily in land surveying and map creation, and brought forth the

development of machines and methods for what would now be referred to as stereo

vision and structure from motion. The early results largely relied on purely geomet-

ric solutions, which were precipitated by the developments in optics and projective

geometry in the 19th century. Some of the pioneers in the field included a projective

geometer and physicist Julius Plücker and his student Felix Klein.

Since its beginnings in the 19th century, geometry for vision has made especially

rapid advances in the past two decades. Currently referred to as geometric computer

vision, it was advanced by both new mathematical methods and availability of faster

computers. In the last decade, the earlier approach of relying purely on geomet-

ric arguments gave way to algebraic interpretations of problems using methods of

2



algebraic geometry. Algebraic geometry is a branch of mathematics where geom-

etry problems are interpreted from the perspective of commutative algebra. This

is accomplished through the use of affine varieties (geometric objects), which are

put in correspondence with polynomial ideals (algebraic objects). This correspon-

dence was initially developed by Hilbert with his famous Nullstellensatz [18]. The

modern field grew out of projective geometry over the course of the second half of

the 20th century with Alexander Grothendieck widely recognized as making the key

contributions [61].

A classic example of a problem in both photogrammetry and computer vision is

the so-called calibrated five point relative pose problem. It is a minimal case of the

so-called structure from motion problem for the perspective projection camera. The

objective is to recover the rotation and translation of a camera between two views

from five projections of 3D points into each view. In the earlest work, Kruppa proved

[34] in 1939 that the five-point calibrated pose problem has at most 11 solutions

relying on purely geometric arguments. It was not until Demazure in 1988 used

modern algebraic geometry techniques that it was shown that the problem has, in

fact, at most 10 solutions [19]. Specifically, Demazure expressed the problem as a

set of polynomial constraints and constructed the corresponding projective variety.

It was then matter of computing the degree of the variety, which turned out to be

10. The five-point problem, including the Demazure constraints, will be covered in

more detail in Chapter 2.

Solving a new problem in geometric computer vision is in general similar to the

above example. A chosen problem is first formulated as a system of polynomial

equations having a finite number of solutions. Consequently, the basic tools of alge-

braic geometry currently used in computer vision are methods for solving systems

of polynomial equations in several variables. Solving such systems is the domain of
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elimination theory. One of the methods specifically used in this thesis, has its origin

in Bruno Buchberger’s 1965 Ph.D thesis [8] where the notion of Gröbner basis was

developed [2]. This Gröbner basis is at the heart of the “action matrix” method

for solving polynomial systems. The second important tool of elimination theory is

the method of resultants. Specifically, we will use the so-called Macaulay resultant,

which is an extension of the standard Sylvester resultant to systems of more than

two polynomials.

Unlike photogrammetry, modern computer vision encompasses an entire spec-

trum of image interpretation, not just geometry. Important tasks include object and

event recognition, object modeling and segmentation, image motion analysis and im-

age and video enhancement. The success and maturity of geometric computer vision

gave rise to numerous applications, especially in the last ten years. Among them are

image stitching, real-time 3D reconstruction and visual navigation. Also known as

visual odometry [56, 32], visual navigation is a task particularly important to the

rapidly developing field of mobile robotics. The goal is to reconstruct a trajectory of

a moving vehicle from camera input alone or in combination with other sensors [46].

In its basic form it can be thought of as structure from motion from video. Since

visual odometry systems are frequently used in mobile applications [51], computa-

tional performance is extremely important and live visual odometry systems have

been developed for that task. As part of this thesis, we will present an advance in the

field of visual navigation which will allow for faster and more robust computation of

vehicle’s trajectory.

In this work we will concentrate on the so-called minimal geometry problems,

which are the problems of pose estimation where only a minimal possible number

of correspondences required for a finite number of solutions is available. The five-

point problem mentioned above is minimal. Such problems have become extremely
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useful for automated calibration, visual odometry for simultaneous localization and

mapping (SLAM), augmented reality and others.

1.1 Related Work

Our work’s primary application is concerned with solving and applying minimal

geometry problems and adds two new methods. Minimal solvers were first introduced

by Nister [54] with his famous five-point algorithm for structure from motion. Since

then, minimal solutions have been found for a number of problems in geometry.

Among them are the solutions to the autocalibration of radial distortion [37, 15],

pose with unknown focal length [9], infinitesimal camera motion problem [64] and

others. The trend in this field has been to use algebraic geometry techniques to

analyze problem structure and construct solvers. This body of work was initially

based on Gröbner bases techniques [63], but recently started to include other related

methods for finding solutions to algebraic systems in order to improve speed and

accuracy [13, 14]. These techniques have been applied non-minimal problems as

well, such as three-view triangulation [65, 12]. Our optimization methods presented

in Chapter 3 build directly on the fast and stable polynomial equation solving method

of Byrod et. al [14].

Since the introduction of the Gröbner basis methods to computer vision by Stewe-

nius [65, 63], numerous problems in geometry have been expressed as polynomial

systems and solved. Minimal problems are particularly important in structure from

motion, absolute pose estimation and feature-based image registration (stitching)

because they construct hypotheses from minimal data, which, in turn, minimizes

the probability of including an outlier in a hypothesis of a RANSAC-based process

[23, 55]. Before the proliferation of these solvers researchers often relied on linear
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algorithms which needed larger than minimal sets of points and hence considerably

longer and less robust sampling process in RANSAC.

The first efficient solver for a minimal problem in computer vision, introduced by

Nister [54] for the five-point relative pose, used a hand-crafted Gröbner basis solver.

Since then Gröbner basis solvers were devised for a number of minimal problems,

such as the solutions to autocalibration of radial distortion [38, 15], relative pose

with unknown focal length [9], and infinitesimal camera motion [64]. Panoramic

image stitching with unknown focal length has been solved [11] as well and will serve

as the main demonstration of our approach. Some non-minimal problems have also

been solved, such as optimal three-view triangulation [65, 12].

1.2 Contributions and Organization

We will now outline the main contributions of this work.

• We prove certain properties of current polynomial solvers used in computer

vision and use them to develop a method for improving the state-of-the-art

solver from Byrod et. al [15].

• Using the improved method above, we develop an algorithm for structure from

motion problem using three image correspondences and a directional corre-

spondence. We call this the “three-plus-one” method.

• We introduce a new method for computing visual odometry using the three-

plus-one method above where four-point hypotheses are used instead of the

classical five-point.

• We develop a new method for absolute pose estimation using six point on

plane correspondences. It uses the Macaulay resultant to achieve a closed-form
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solution. This minimal algorithm allows for accurate, automatic calibration

of line scan LIDAR-camera systems from six image line to to LIDAR point

correspondences.

This document is organized as follows. Chapter 2 is dedicated to a review of the

basic concepts in computer vision and algebraic geometry and modern “action ma-

trix” methods. We discuss image formation, set up several geometric problems and

introduce robust estimation. In the algebraic geometry section, we describe the basic

concepts such as varieties, polynomial rings and ideals as well as the Gröbner basis

methods and its application to existing problems. The chapter also contains com-

plete examples for computing the action matrix and designing a solution template

for a polynomial system. It will also serve to set up the notation for the remainder

of this document.

In Chapter 3 we introduce the methodological improvement to the standard

method for solving polynomial systems called the action matrix method and show

how it allows for significant reduction in computing time with simultaneous increase

in accuracy of some of the algorithms using the method. The most significant com-

putational step of the action matrix method is an LU or QR decomposition of a

large matrix of polynomial coefficients. We show that our method allows one to

significantly reduce the size of this coefficient matrix by removing certain rows and

columns which turn out to be unneeded. The number of rows and columns removed

has been observed to be up to 50% in one algorithm, which results in a significant

improvement to the computational time as well as numerical stability. To illustrate

these improvements we apply our optimization to the existing algorithms for the

panoramic stitching with unknown focal length and radial distortion, and the opti-

mal three-view triangulation. Both algorithms show reduction in the computational
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time and the panoramic stitching can now be run using single precision arithmetic

and in half the time per hypothesis.

In Chapter 4 we use the optimized action matrix method above to solve the struc-

ture from motion with a known directional correspondence problem. We formulate

the problem in terms of motion parameters directly, not the essential matrix param-

eters, as in the competing approach from Fraundorfer et. al [24]. The action matrix

solution, while not as fast as the closed-form solution from Xun and Roumeliotis,

exhibits better numerical accuracy. We also give a characterization of degenerate

configurations of this problem. This chapter also introduces the four-point visual

odometry algorithm. It is based on the three-plus-one problem and allows us to

compute up-to-scale (5DOF) visual odometry using four-point random subsets of

correspondences instead of traditional five. We show that under realistic outdoor

conditions our method produces similar results to the five-point method in a more

robust and computationally efficient manner.

In the final chapter, we apply the Macaulay resultant to the minimal problem of

pose estimation from six 3D point to plane correspondences. The result is a closed-

form solution to the problem, which, as it turns out can be solved with a 4th order

polynomial. We then apply this algorithm to the problem of calibration of LIDAR

and camera systems, which is important in robotics. We use lines in the image and

points in the LIDAR data as correspondences and develop an automatic procedure

for calibrating such systems without initialization.
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Chapter 2

Geometric Computer Vision and

Algebraic Geometry
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2.1 Introduction

Solving polynomial systems is an evolving art. Currently, there is no generic frame-

work for solving systems of polynomial equations in a fast, numerically sound way,

so every application domain has to fend for itself. Recent interest in algebraic ge-

ometry techniques in computer vision is motivated primarily by the availability of

problems that can be expressed in terms of polynomials, but also the special prop-

erty of these geometry problems which allows a solution template to be computed

once (possibly at a high computational cost), and then applied to new instances of

the same problem very quickly. The special property is that the polynomial system

for a specific geometry problem is the same for each geometric configuration up to

the polynomial coefficients, which are specific to the problem instance (different lo-

cations of features in the image, for example). The problem can then be solved in

a generic way that is numerically stable for some large test set of configurations.

The numerical issues associated with certain configurations, do not normally cause

problems since the data (e.g. image point correspondences) are abundant enough to

find non-degenerate configurations. The art in creating such solvers comes in manip-

ulating the operations (for instance the monomial ordering or variable elimination

sequence) to ensure a stable solution in all cases.

Many real-world problems can be expressed as systems of polynomial equations,

such that the solutions to the system satisfy the original problem. In this section,

we will highlight some of the recent polynomial system solving techniques developed

specifically for geometric computer vision. These methods are state of the art for

providing accurate solutions to a number of problems, including point triangulation,

camera pose computation and camera calibration. The work in this area started

with the basic hand-crafted Gröbner basis solvers [65, 64, 63]. These were followed
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by automatic method for solver discovery [35] and finally by the current state-of-the-

art technique using techniques which trade off the convenience of Gröbner basis for

speed, numerical stability or accuracy [13, 15]. In a subsequent section we will show

an improvement to the last solver, so it will be covered in the most detail.

Despite the successes in solving previously unsolved geometry problems using

these methods, there is still a problem with practical usage of the algorithms, since

hand-optimized solutions tend to be faster (though not necessarily more accurate).

We will assess the current state of the art in speed and accuracy issues in the final

section. We will also highlight some of the compromises in the different methods

and offer some insight into the future directions.

Due to the complexity of the subject, it is impossible to provide the entire back-

ground on algebraic geometry within this dissertation. There are many excellent

books on the subject [17, 18], but we will give a brief introduction in this chapter,

referring the reader to the textbooks for proofs and details. We will also give a

similarly short introduction to the field of geometric computer vision, although we

recommend [27] for a complete treatment. We will sometimes present some com-

puter vision concepts without proof or even a justification, since they are merely

preliminary steps needed to obtain the initial polynomial system.

We will provide a short review of geometric computer vision, including minimal

problem solving and robust estimation techniques in section 2.2. Section 2.4 will

introduce some of the main concepts from algebraic geometry. In Section 2.5, we

will discuss the basic Gröbner-based method developed by Stewenius and present

examples of using this technique on a small polynomial system. In Section 2.6, we

will describe more advanced techniques for improving performance and stability of

the basic solver. In Section 2.7 we will offer some discussion on the relative merits

of the methods.
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2.2 Geometry and Robust Estimation

In this section we will motivate and set up some of the geometry problems that

can be solved using commutative algebra techniques introduced in the remaining

sections. We will introduce the basic notions from geometric computer vision and

robust structure-from-motion estimation. We will also set up the polynomial systems

for the 5-point pose, the 3-view triangulation and the 3-point image stitching with

unknown focal length and radial distortion that will be used later to demonstrate

existing techniques and our improvements.

2.2.1 Geometric Computer Vision

Geometric computer vision deals with problems of discovering motion or calibration

parameters of cameras and structure of objects in a 3D world from projections of

light reflected from those objects onto the 2D image plane of the cameras. Before

the geometry problems can be formulated (in terms of points, lines and their cor-

respondences), image structure must be analyzed. Low-level computer vision deals

with detecting interest points (or lines), and matching them across different images.

For simplicity, we will assume (unless otherwise specified) that all such features have

been “normalized”, which means that a camera can be though of as a rigid coordi-

nate system in the world, with image center at [0, 0, 1]. We will also assume that the

2D points in the images have been detected, localized, normalized and matched to

their correspondences in other images. There are two types of such correspondences:

2D-2D correspondence refers to two image points in two different cameras that are

projections of light reflected from the same 3D point (object) in the scene in front

of the cameras, and 2D-3D correspondence where a 3D point in the scene projects

onto a 2D point in the image.
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The basic problems in geometry of multiple view (perspective projection camera)

geometry that can be solved via polynomial systems methods are summarized below:

1. The problem of relative pose refers to finding the position and orientation

(pose) of a camera with respect to another camera from 2D-2D correspondences

between two cameras. See Figure 2.1 for an illustration.

2. In a resection problem we seek the pose of camera from 2D-3D correspon-

dences, i.e. given a 3D scene and its image, locate the camera in the scene’s

coordinate system.

3. In a camera calibration problem we want to find, in addition to relative pose,

some internal parameters of the camera which make normalization possible. In

this case, points are not normalized or partially normalized.

4. Solving a triangulation problem computes a 3D scene point from 2D-2D

correspondences between two of more known cameras. See Figure 2.2

5. Image stitching (panorama creation) computes the 2D (image homograph)

or 3D (camera rotation) parameters that align features in a set of images.

Geometric computer vision is a topic of numerous textbooks, with a complete

treatment contained in Hartley and Zisserman [27].

2.2.2 Minimal Problems

Many methods have been developed to solve above problems. Some can be solved

in closed form (such as 2-view triangulation), and some can be formulated as least

squares problems, but without optimality guarantee. There is a class of problems

which turns out to be particularly useful when dealing with noisy, real-world data.
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Figure 2.1: Illustration of the 5-point
pose problem. We want to find the ro-
tation and translation between cam-
eras, given projections of five scene
points.

Chapter 11

Optimal Triangulation

Figure 11.1: In this chapter a solution to the optimal triangulation problem in three views
is given.

In this chapter it is demonstrated how to solve for optimal triangulation in three
images. The solution method is based on solving for the extreme points of the objective
function, as said earlier there are six solutions for dF/dxi = 0, i = 1 . . . 3 with two
images, using Macaulay it is noted that there are 47 solutions for three images and 148
solutions for four images.

11.1 Solution

The coordinate system can be changed so that all image points are in
[
0 0

]!
and the

last row of camera i consists of zeros except for a one on position i. Let P k
i denote row k

of camera i and let P kj
i denote element (k, j) of camera matrix i.

The objective function F can now be written

F (X) =
3∑

i=1

Fi(X),

95

Figure 2.2: Illustration of the 3-view
triangulation problem. We want to
find a scene point that minimized the
image reprojection error in three cam-
eras.

Definition 2.2.1. Let P (S) be a problem in geometric computer vision requiring a

set of constraints S. P (S) is a minimal problem if, in general, it has a finite number

of possible geometric configurations that satisfy it, and the number of configurations

for any set smaller than S is infinite.

When referring to a number of solutions of a problem, the expression “in general”

in this case means that a randomly selected set of constraints will yield a given

number of solutions almost surely. Of course, problems arising in practice have only

one true solution corresponding to the real positions of cameras and points in the

world when the measurements were taken. But since we seek not to overconstrain

the problem, geometric ambiguities (such as reflections around camera center and

“twisted pair” [27, 52] in the case of relative pose estimation) arise when minimal

problems are solved. These ambiguities are easy to resolve by testing the recovered

set of solutions against additional constraints.

Of the problems listed in the previous section, the triangulation problem is a

special case. It is used to recover scene structure when camera poses are known,

and as such not used in a robust framework. The minimum set of correspondences

for triangulation is 2, but an optimal, Gröbner basis-based solution exists for 3
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correspondences.

2.2.3 Robust Estimation

The output of a low-level vision subsystem of a real-world computer vision applica-

tion is often noisy. We will first cover the possible sources of error in the feature

detection and matching subsystem.

There are two sources of noise due to image processing and each one has to be

dealt with by different means. The first source of noise comes from gross errors in

feature detection and matching. For example, a feature that does not correspond to

a stable, real-world structure might be detected by a feature detector (such as Harris

of SIFT detector). This can happen purely due to image noise, but also shadows,

reflections, lens flares, true features of objects that do not represent the model to

be recovered and virtual features arising from intersections of projections of objects

at different depths in the image plane. Errors in feature matching, which can arise

when matching repetitive or weak features produce erroneous correspondences that

also fall in the category of gross errors. Such gross errors are referred to as “outliers.”

The second source of error is feature localization. This error cannot be avoided and

is inherent to all detected features, but some feature detectors are better than others

(such as ones that locate features with sub-pixel accuracy).

Each category of noise needs to be dealt with separately. For problems of re-

covering camera pose the gross errors, or outliers, are usually eliminated using a

“hypothesize-and-test,” or RANSAC [23] framework. The detector noise is then

minimized using least squares or iterative techniques (such as bundle adjustment),

depending on the application.

The RANSAC framework requires that we produce a large number of hypotheses
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from small subsets of observations (such as image correspondences), and test their

fitness by scoring them against the rest of the observations (such as by computing

the reprojection error of an observation in the camera). The hypothesis with the

highest number of inliers is declared the winner, and is often used as an initial guess

for an optimization process involving all observations (bundle adjustment).

We will demonstrate this process with a classic example. Given a set of 2D point

observations S = (xi, yi) ∈ R2, we wish to fit a line robustly through the points.

Since two points define a line, the minimal problem for a line fit needs two point

observations. The steps of the RANSAC algorithm are given below.

1. Select a random subset of 2 points from the S.

2. Create a hypothesis by fitting a line through the 2 points.

3. Compute distances between the remaining points in S and the line hypothesis,

and count the number of points (inliers) that have this distance within a certain

threshold.

4. Repeat the steps 1 through 3 a certain number of times, keeping the hypothesis

with the highest number of inliers.

5. Output the best hypothesis and its inlier set.

It is clear that the fewer observations we use, the better chance we have of getting

a subset without gross errors (outliers). This is the main motivation for investigating

problems involving minimal numbers of correspondences. There are many variations

on the original RANSAC framework that are in use today [55, 68, 67].
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Figure 2.3: This figure illustrates the relationship between two camera coordinate
frames (views) and the scene [62].

2.3 Basic Objects in Geometry

We now define some of the basic terminology used to set up the problems in the

later sections.

• Image points are represented by homogeneous 3-vectors in real projective space

u = (x, y, 1)> ∈ RP2.

• Scene points are represented by homogeneous 4-vectors in real projective space

U = (X, Y, Z, 1)> ∈ RP3.

• A rigid camera motion matrix is represented by a 3× 4 projection matrix P

The projection matrix can be further seen as P = [R t], where R is a 3D rotation

matrix (R ∈ SO3), and t is the translation vector. A point Us in the scene is related

to a point Uc in the camera coordinate system by the following transformation:


Xc

Yc

Zc

 = R


Xs

Ys

Zs

 + t.

17



In a camera coordinate system, the center of projection is at the origin, the Z-axis

is the optical axis, and the image plane is the plane Z = 1. So, the projection of

a point in the camera coordinate system Uc = (Xc, Yc, Zc, 1) into the image point

u = (x, y, 1) is

x =
Xc

Zc

, y =
Yc

Zc

.

The transformation between two cameras is illustrated in Figure 2.3. We will relate

the projective transformation of a scene point into the image, as defined above, as

u ∼ PcUs.

2.3.1 The 5-point Relative Pose Problem

The first problem on the list is “relative pose”, also known as “structure from motion”

is a problem of estimating the points in the scene and camera motion from image

point correspondences. An illustration of this is shown in Figure 2.3, where a scene

point is projected into two cameras, creating a 2D-2D correspondence. The minimal

case for the two-view epipolar geometry estimation requires five correspondences

[52]. The 5-point relative pose problem is easy to compute using the Gröbner basis

[63], and it will serve as a prototype for other solutions.

The classic problem is stated as follows. Given five normalized, 2D-2D corre-

spondences u to u′ between two perspective projection cameras, compute the rigid

motion between the cameras. The rigid motion matrix [R t] has 6 degrees of free-

dom, however, the relative pose between cameras can only be estimated up to scale

or the translation vector t.

The solution to this problem rests on the following facts in computer vision, the

justification for which is outside the scope of this report An efficient solution to this
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problem was introduced by [52]. We first define a matrix which relates correspon-

dences between two calibrated cameras. This constraint is given by u′>Eu = 0,

where E ≡ [t]×R, and [t]× is a 3 × 3 skew-symmetric matrix. The matrix E is

known as the “essential matrix”.

This constraint can be re-written as ũẼ = 0, where

x̃ ≡ [x1x
′
1 x2x

′
1 x3x

′
1 x1x

′
2 x2x

′
2 x3x

′
2 x1x

′
3 x2x

′
3 x3x

′
3]
>,

u = (x1, x2, x3) and Ẽ is the column vector of the entries of E in row order.

We then stack the ũ> for all five points and compute the right nullspace of the

resulting 5 × 9 matrix. The four 9-vectors that span this space, if written as 3x3

matrices X, Y, Z and W give us the following contraint for the essential matrix:

E = xX + yY + zZ + wW (2.3.1)

for some x, y, z, w ∈ R. The scale ambiguity allows us to set w = 1 [52].

In addition, it was shown in [29] that an essential matrix satisfies the trace

constraint

EE>E − 1

2
trace(EE>)E = 0. (2.3.2)

The above constraint implies the determinant constraint

det(E) = 0. (2.3.3)

The two equations above are referred to as Demazure constraints [19]. If we substi-

tute the E from equation 2.3.1 into the constraints 2.3.2 and 2.3.3, we will obtain

10 cubic polynomials in x, y and z.
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This polynomial system can be approached with Gröbner basis methods, but [52]

shows a way to obtain a 10th degree polynomial in x only, and solving for y and z

by substitution.

2.3.2 Optimal 3-view Triangulation

The optimal triangulation problem is different from the other problems covered by

the methods in this report because it requires us to find an optimum of an objective

function, rather than finding solutions that (in general) fit the input data perfectly.

In this case, the error function for each view is the Eucledian distance between

the observed point on the image, and the projection of the triangulated 3D point

into the image (see Figure 2.2). This is referred to as the reprojection error. The

complete solution to the 2-view problem was first given by [26], and the 3-view

problem formulation presented below was not solved until the Gröbner basis solution

was published in [65].

We will now formulate the problem in terms of polynomial constraints. We are

given three camera matrices Pi = [Ri ti], and three corresponding image points ui.

We must compute a 3D point U = [x1, x2, x3]
>, minimizing the objective function

defined as the sum of squared reprojection errors:

F (U) =
3∑

i=1

d(PiU,ui)
2, (2.3.4)

where d(ui,uj) is the Eucledian distance (in the image) between ui and uj.

We first simplify the problem by setting all image points ui to be at the origin,

and adjusting the camera matrices to compensate. This is done by rotating them

around the camera’s center of projection to get P ′
i = [Rui

Ri t], where Rui
∈ SO3

is the rotation between ui and [0, 0, 1]> in the camera coordinate system. We now
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rewrite the objective as

F (U) =
3∑

i=1

Fi(U), (2.3.5)

where reprojection errors Fi(U) are given in terms of the rows of the camera matrices

P ′
i = [P 1

i P 2
i P 3

i ]>:

Fi(U) =
(P 1

i U)2 + (P 2
i U)2

(P 3
i U)2

(2.3.6)

which is the squared length of the image vector after re-projection. We now require

that

dF

dxi

= 0 (2.3.7)

for each component xi of U.

Further, we can choose a coordinate system where the third row of each P ′
i has a

non-zero element in the ith position, placing the camera centers on the plane z = 0.

This allows us to write the following simplification:

Fi(U) =
(P 1

i U)2 + (P 2
i U)2

x2
i

(2.3.8)

We differentiate this function with respect to xi. When i 6= j, the derivative is

[63]

dFi

dxj

= 2
P 1

i (j)P 1
i U + P 2

i (j)P 2
i U

x2
j

, (2.3.9)

where P k
i (j) is the jth element of P k

i . When i = j, we have

dFj

dxj

= 2
(P 1

j (j)P 1
j U + P 2

j (j)P 2
j U)xj − (P 1

j U)2 + (P 2
j U)2

x3
j

(2.3.10)

When these derivatives are written out in terms of xj for j = 1 . . . 3 and brought
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under the same denominator to form polynomial equations, we end up with 3 equa-

tions of degree 6. Since the expression for the derivatives has monomials in xj in the

denominator, we require that x1x2x3 6= 0, which means that solution arising from

observations in the physical world will never have xj = 0. We will discuss how to

deal with this constraint in section 2.5.

Z"

Z"

Figure 2.4: Illustration of the geometry of two-view panorama stitching with un-
known common focal length and radial distortion.

2.3.3 Three-point Panorama Stitching

Another complex minimal problem is one of estimating the 3D rotation of the camera

whose focal length and radial distortion are unknown. The geometry of the problem

is illustrated in Figure 2.4. This problem was recently solved in [11] using the more

advanced QR decomposition technique which will be covered in the next section. It

required this method due to numerical stability issues associated with solving the

polynomial system presented below. We will use this problem later as an example for

our optimization technique where we significantly improve the performance and nu-

merical stability of the solver. Here we will only introduce the polynomial model for
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this minimal problem. The two cameras have square pixels, zero skew and the prin-

cipal point in the center of the image, thus the calibration matrix K = diag(f, f, 1),

where f is the focal length. The two camera views also share a common origin in

the stitching scenario and thus P1 = K[I 0] and P2 = K[R 0], where R ∈ SO(3).

We now arrive at the following relation between world point U and image point u:

z1u = KU, z2u = KRU, (2.3.11)

where z1 and z2 are the depths. The dependence on the depths can be removed by

rewriting the constraints as

〈K−1u1j, K
−1u1k〉2

|K−1u1|2|K−1u1|2
=

〈Uj,Uk〉
|Uj|2|Uk|2

=
〈K−1u2j, K

−1u2k〉2

|K−1y2j|2|K−1u2k|2
(2.3.12)

These constrains are augmented with radial distortion model |v| = (1+λ|v|2)|u|.

The normalized image point can now be expressed as

u ∼ v + λ[0 0 v2
1 + v2

2]
> (2.3.13)

By substituting (2.3.13) into (2.3.12), squaring to remove the square roots and

multiplying through by the denominators, we obtain a polynomial of degree 3 in

f 2, and degree 6 in λ. Using constraints from three point correspondences yields a

system with 2 equations and 18 solutions [11].
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2.3.4 Representing the System

Now that we have the polynomial system for each geometry problems presented

above, we are ready to move on to solving them using techniques from algebraic ge-

ometry. For the remainder of this thesis, we will deal with the matrices of coefficients

of these equations. We will think of the system as

CX = 0, (2.3.14)

where C is the matrix of monomial coefficients, and X is the vector of monomials

under a certain monomial order. For example, a system of equations {x2 + 2y2 +

3x + 4 = 0, 5x + 6y + 7 = 0} under lexicographic monomial order (see Section 2.4)

will be given as

 1 0 3 2 0 4

0 0 5 0 6 7





x2

xy

x

y2

y

1


= 0.

This type of representation is helpful when computing the Gröbner basis by the

F4 method [22] discussed in section 2.5 and will serve as a basis for our solver

optimizations proposed in Chapter 3.
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2.4 Varieties, Ideals and Gröbner Basis

This section contains an introduction to the main concepts in algebraic geometry

that will be used to solve systems of polynomial equations arising from minimal

problems in computer vision. The presentation here is inspired by books by Cox

et. al [17, 18] both of which we recommend as a formal treatment of the subject.

We will approach the main concepts of algebraic geometry with an eye on solving

systems of polynomial equations using Gröbner basis methods.

2.4.1 Overview

Given a set of polynomial equations in n variables with coefficients from C, we want

to find a set V in Cn that satisfies these equations. The main point in algebraic

geometry is that we can describe V using a different set of polynomials. In fact,

we can describe a set of all polynomials that V satisfies. We can now manipulate

this set of polynomials, which we will call I, to choose from it polynomials which we

want to solve (not the original ones), and be guaranteed that their solution set will

be the same as V , the solution set we seek. The reasons we do not want to deal with

the original equations may be either of the following:

• Original equations are difficult to solve (e.g. variables cannot be expressed in

terms of other variables and eliminated).

• Original equations are ill-conditioned (e.g. determining the value of one vari-

able using finite-precision arithmetic, and substituting results in a large error

in another variable).

Using algebraic geometry we can try to address the above issues in a formal way,

although straightforward construction of solvers is often not practical.
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Algebraic geometry provides many methods for solving algebraic systems. These

include direct Gröbner basis elimination, hidden variable resultant methods, multi-

polynomial resultant-based techniques and eigendecomposition methods. Our

overview in this chapter will be directed toward the eigendecomposition methods,

which seeks to express a finite solution set V as an eigenvalue/eigenvector problem

of a special matrix. This method is presented here since it is improved upon in

Chapter 3 and used to solve the visual odometry problem in Chapter 4. In Chap-

ter 5 we will give an overview of resultant-based methods, which allow us to solve

another minimal problem, namely the camera-LIDAR calibration problem, in closed

form. The hidden variable method has also found use in computer vision as well for

solving minimal problems as well [39]. While some methods succeed better with cer-

tain problems than others, it is important to note that there is currently no generic

method for solving an arbitrary system of equations under finite-precision arithmetic.

In the following sections we will introduce some of the basic objects and theorems

that underpin the study of this problem.

2.4.2 Rings and Polynomials

We will begin with some formal definitions for the construction of polynomials. The

choices of rings and fields are crucial when it comes to solving polynomial systems

over them. A model ring is the integers, which are closed under addition, subtraction

and multiplication, but not under division. A field, denoted by K, in addition to

all properties of a ring, is also closed under division (except for division by the 0

element).

Since linear algebra operations on a vector space that will be defined by the

coefficients of polynomials require that scalars come from a field, the exact choice
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Figure 2.5: This figure illustrates a variety defined by the polynomial equations
y − x2 = 0, z − x3 = 0, x− y + 2 = 0. The two points belonging to the variety can
be seen at the intersection of the quadratic, cubic and planar sheets corresponding
to the polynomials.

of a field is important. In geometric computer vision we will deal with the field of

complex numbers C and its subfields the real numbers R and the integers modulo p

denoted Z/p, where p is a prime. The last field, called the prime field, is finite.

We will now formally define a monomial and polynomial of one or more variables.

Definition 2.4.1. A monomial is a finite product of variables x1, . . . , xn of the

form xk1
1 xk2

2 ...xkn
n , and is denoted as xα, where α ∈ Nn.

Definition 2.4.2. A polynomial is a finite linear combination of monomials with

coefficients in a field K.

Under polynomial addition and multiplication, polynomials in x = x1, . . . , xn

form a polynomial ring over K is denoted as K[x1, . . . , xn].
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2.4.3 Varieties and Ideals

A geometric description of a solution set to a polynomial system is given by an affine

variety.

Definition 2.4.3. Given a set of polynomials f1, . . . , fs in a field K[x1, . . . , xn], we

can define an affine variety as a set of all solutions to the system f1 = . . . = fs = 0,

and denote it as V(f1 . . . fs).

For a geometric interpretation of the variety, let us consider a set of polynomials

over a R[x, y, z], {y = x2, z = x3}. A variety defined by each polynomial generates a

2D surface in R3, and their intersection (V(y−x2, z−x3) defines a curve (see Figure

2.5).

We also define the object which is used to study the algebraic properties of

varieties.

Definition 2.4.4. An ideal is a subset of K[x1, . . . , xn] generated by f1 . . . fs (and

denoted by < f1 . . . fs >) is the set

{
s∑

i=1

hifi : hi, . . . , hs ∈ K[xi, . . . , xn]}. (2.4.1)

In other words, an ideal generated by a set of polynomials f1 . . . fs, is a set

that includes the generators, and is also closed under the addition operation and

multiplication by the members of the ring K[x1, . . . , xn].

We also define the operator I, which as a set of all polynomials that vanish on a

variety.

Definition 2.4.5. An ideal of a variety V = V(f1, . . . , fs) is a set

I(V ) = {f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0 ∀ (aa, . . . , an) ∈ V }. (2.4.2)
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It can be shown that I(V ) is an ideal. Another helpful notion is a radical ideal:

Definition 2.4.6. An ideal I ⊂ K[x1, . . . , xn] is radical if fm ∈ I for any integer

m ≥ 1 implies that f ∈ I.

Radical ideals are denoted
√

I. As an example, let’s see what the radical ideal

of J = Z/4 is. This is the ideal of all multiples of 4. Since 4 is in the ideal, 2 must

also be in the radical ideal, and so is every multiple of 2 with other ideal members.

So,
√

(J) = Z/2. It turns out that an ideal generated by a variety (the set of all

polynomials that vanish on that variety) is a radical ideal, and therefore corresponds

to a set of all polynomials that vanish on that variety by a key theorem in algebraic

geometry called Nullstellensatz.

Theorem 2.4.7. Let I be an ideal in an algebraically closed field K[x1, . . . , xn], then

I(V) =
√

I (2.4.3)

In the process of solving geometry problems, we will construct an ideal from

set of polynomials which vanish on the solutions to the problem (the variety), and

manipulate it to find the solution.

To illustrate these concepts we will use a variety V (x2 − 1 = 0, y2 − 1 = 0)

in Figure 2.6. This variety with polynomials from R[x, y], has four distinct points:

(−1,−1), (−1, 1), (1, 1) and (1,−1), plotted as yellow dots. These two equations that

define the variety are plotted in red in the figure.. We create an ideal I(V ), and plot

some of its members in other colors. For example, x5−x2 +x3 +y2x+y3−x−y = 0

is plotted in green, and x5 + x2− x3 + 1 + y2x− y5− 2y2− x− y3 = 0 is in blue. We

see in the figure that each graph intersects the variety.
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Figure 2.6: Illustration of a variety composed of the yellow points,
(−1,−1), (−1, 1), (1, 1) and (1,−1), the ideal generators {x2 − 1 = 0, y2 − 1 = 0}
shown in red and other members of the ideal.

2.4.4 Polynomial Division and the Importance of Monomial

Ordering

When performing polynomial division, the order of monomials in a polynomial affects

the quotient and the remainder.

An order on monomials of the form xα = xa1
1 . . . xan

n is a well-ordering on tuples

from Nn. We will first define the lexicographic order.

Definition 2.4.8. Given two monomials x1 = xa1
1 . . . xan

n and x2 = xb1
1 . . . xbn

n , where

variables are ordered such that x1 > . . . > xn, we say that under the lexicographic

order x1 >lex x2 if vector difference (a1 . . . an)− (b1 . . . bn) has the leftmost non-zero

entry positive.

The order most often used when computing with Gröbner basis is the graded

reverse lexicographic order.
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Definition 2.4.9. Given two monomials x1 = xa1
1 . . . xan

n and x2 = xb1
1 . . . xbn

n , where

variables are ordered such that x1 > . . . > xn, we say that under the graded reverse

lexicographic order x1 >grevlex x2 if

(a1 − b1, . . . , an − bn,
∑

ai −
∑

b1) (2.4.4)

has a negative rightmost non-zero entry.

This definition simply means that the monomials are ordered by total degree

(
∑

ai) first, and the tie is broken in a reverse lexicographic way. In this chapter we

will assume that the polynomials are ordered according to GrevLex. The GrevLex

order has some nice computational properties, and is commonly used for Gröbner

basis computation. Other monomial orders are convenient to use with techniques in

the next chapter, and they will be described there.

We will illustrate the importance of ordering with an example, but first we will

first define the quotient and the remainder of a polynomials division.

Definition 2.4.10. A quotient q and remainder r of two polynomials f1, f2 ∈

K[x1, . . . , xn] are unique polynomials (under a chosen monomial order) such that

f1 = qf2 + r,

where degree(r) < degree(f2) or degree(r) = 0.

Let f1 = xy2z and f2 = xz + x + y2. Using the division algorithm, we can find

the quotients and the remainder of the division of f1 by f2. We can show that under

under lexicographic order, we can express f1 as follows:

f1 = (−xy2)f2 − (xy2 − y4). (2.4.5)
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If we perform the division under the GrevLex order, we get

f1 = (xz)f2 + (−x2z2 − x2z). (2.4.6)

Once we fix the monomial order >, we can define the notions of leading term,

leading monomial.

Definition 2.4.11. The leading term of a polynomial f under monomial order >

is the greatest term under > with a non-zero coefficient. The leading term is denoted

LT (f).

Definition 2.4.12. The leading monomial of f is the monomial part of LT (f).

The leading monomial is denoted LM(f)

We will see their importance when we discuss the Gröbner basis.

2.4.5 The Gröbner Basis

Even when the monomial order is fixed, the division by two or more polynomials will

not yield the same remainder in all cases. We will eventually be interested in the sets

of equivalence classes under division by the generators of an ideal, and the Gröbner

basis defines such a set of generators, that the remainders are unique regardless of

order of polynomials in a division process.

We will use two facts from algebraic geometry to introduce the Gröbner basis.

Theorem 2.4.13. Every ideal I ⊂ K[x1, . . . , xn] can be generated by a finite set of

polynomials in K[x1, . . . , xn].

This is known as the Hilbert Basis Theorem. The second important fact

deals with uniqueness of quotients and remainders of polynomials discussed in the
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last section will also help us construct quotient rings. A Gröbner basis for the ideal

will uniquely define the remainders, which will allow us, eventually, to compute a set

of useful equivalence classes on K[x1, . . . , xn] which will aid in finding the solutions

to the original polynomial system.

Definition 2.4.14. For a fixed monomial order > on K[x1, . . . , xn], a Gröbner basis

for I ⊂ K[x1, . . . , xn] is a finite set of polynomials G ⊂ I such that for all f ∈ I,

LT(F ) is divisible by LT(gi) where gi ∈ G.

This is equivalent to the following statement: G = g1, . . . , gn constitute a Gröbner

basis of I if 〈LT (g1), . . . , LT (gn)〉 = 〈LT (I)〉.

It can be shown that G is indeed a basis for I, and that it can be computed

starting with any generating set in a finite number of steps (by the Buchberger

algorithm).

Note that by the Nullstellensatz this change of basis does not affect the solution

set (the variety of I).

Many algorithms have been found to compute the Gröbner basis. The classic

Buchberger’s algorithm [7], was introduced in 1965 along with the Gröbner basis

itself. This algorithm proved to be impractical due to large space requirements for

some ideals [18], and due to numerical instability with finite precision arithmetic.

The method for computing the Gröbner basis that is currently used in the computer

vision literature was introduced in [22] as the “F4” algorithm. This algorithm im-

proves both speed and numerical stability by representing the polynomial system

as a CX, where C matrix of coefficients and X is a vector of monomials in a fixed

order. The algorithm iteratively performs steps of Gauss-Jordan elimination and

adds more polynomials to the generating set until the basis is computed. The F4

algorithm is key for the Gröbner basis method presented in [65]. More details are
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provided in Chapter 2.5.

2.4.6 Dimensions and Degrees

When deriving a solution to a new problem, it is necessary to describe a solution

space of a variety. This is done by computing its dimension. We will illustrate

it with an example. The variety V(y − x2) describes a 2D manifold in R3, so,

intuitively, its dimension is 2. On the other hand, the variety V(y − x2, z − x3) is

the intersection of two 2D manifolds, and is, in general one-dimensional. Finally,

the variety V(y − x2, z − x3, x − y + 2) has only two solutions, and it thus zero-

dimensional. Figure 2.5 shows the graphs of all three equations. Analogously, when

we talk about a zero-dimensional ideal, it is generated by a zero-dimensional variety.

The algorithms for computing the Gröbner basis mentioned in the previous section

only make sense on zero-dimensional ideals.

The degree of an ideal is the dimension of the vector space defined by the ring

K[x1, . . . , kn]/I, which also corresponds to the number of solutions to the polynomial

system. In Chapter 2.5 we give an example of using Macaulay2 to determine that

the number of solutions to the 5-point relative pose problem is 10.

2.4.7 Quotient Rings

The methods used to solve equations in this report rely heavily on properties of the

quotient ring. Under division by G, a polynomial in K[x1, . . . , xn] by G, can be

decomposed as follows:

f = h1g1 + . . . + htgt + f
G
.

If G is a Gröbner basis of an ideal I, then the equation f
G

is the normal form

of f with respect to I. The equations in the ring with the same normal form with
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respect to I make up a set of equivalence classes [f ] modulo I. We can now define

the quotient ring.

Definition 2.4.15. The quotient ring K[x1, . . . , kn]/I is the set of equivalence

classes for congruence modulo I:

K[x1, . . . , xn]/I = {[f ] ∈ K[x1, . . . , xn]}. (2.4.7)

Once the monomial order has been set, the class membership can be established

by polynomial division by Gröbner basis G [18]. Each remainder of such division

uniquely defines an equivalence class. The concept of quotient rings is crucial to

solving polynomial systems. The remainders, which define the equivalence classes

form a vector space with the standard basis defined by a set of monomials B = {xα :

xα /∈ 〈LT (I)〉}. Addition of vectors in this space is standard vector addition on the

polynomial coefficients, once expressed in the basis B. The multiplication operation

is multiplication modulo the Gröbner basis of I.

For a zero-dimensional ideal, this vector space is finite-dimensional [18].

2.4.8 Saturation of an Ideal

The action matrix method described below, as well as other methods based on the

quotient ideal require that the input ideal is zero-dimensional (the variety vanishes

at a finite number of points). For some problems, when the constraints are laid

out in polynomial form, the ideal generated is not zero-dimensional, and contains

families of solutions which need to be eliminated prior to solving the system. This

elimination of specific solutions is called saturation. The following definition is from

[63].
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Definition 2.4.16. The saturation sat(I, f) of an ideal I with respect to a polyno-

mial f is the set

sat(I, f) = {p | ∃k, fkp ∈ I}. (2.4.8)

The saturation produces an ideal where the family of solutions V(f) has been

removed from I.

2.4.9 The Action Matrix

Given a quotient ring C[x1, . . . , kn]/I of a finite dimension, we can choose a basis B

for the vector space formed by the polynomials under the division by the Gröbner

basis, as described above. In this space, the multiplication by a polynomial in

C[x1, . . . , kn] turns out to be a linear operation [18]. The matrix mf representing

this operator is referred to as the action matrix in the computer vision literature,

and “multiplication map” in [18].

Let s = |B| be the size of B. The matrix mf is a s× b matrix whose ith column

is composed of the coefficients of the polynomial fxα(i)
G

where xα(i) is the ith basis

monomial.

The following theorem, proved in [18], is the basis for the action matrix methods.

Theorem 2.4.17. Let I ∈ C[x1 . . . xn] be a zero-dimensional ideal, and let mf be

the action matrix for f . Then λ is an eigenvalue of mf if and only if λ is a value of

a function f on V(I).

This theorem tells us that if we can extract this action matrix mxi
from the vector

space spanned by the basis monomials of C[x1, . . . , kn]/I, we can find the values of

xi on the variety via eigenvalue decomposition. It is also shown in [18] that, with

certain restrictions, we can compute the entire solution set as the left eigenvectors

of mf .
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2.4.10 Solving a Polynomial System

We give an example of solving a polynomial system using the action matrix method

in an computer algebra system Maple v11. The Maple commands will be given in

typewriter font.

Let us go back to the set of equations f1 = y − x2, f2 = z − x3, f3 = x − y + 2

shown in Figure 2.5, and the zero-dimensional variety they generate. To solve this

system (find the points on the variety) we first need to find the GrevLex Gröbner

basis G for the ideal I(f1, f2, f3):

F := [y-x^2,z-x^3,x-y+2]:

G := Groebner[Basis](F, tdeg(x,y,z));

G := [3y − 4− z, 3x + 2− z, z2 − 8− 7z]

We can now find the basis monomials for C[x, y, z]/I with respect to the same mono-

mial order:

B := Groebner[NormalSet](G,tdeg(x,y,z));

B := [1, z], table([1 = 1, z = 2])

We can see that the quotient ideal is spanned by two monomials, so we expect two

solutions. We can now compute the action matrix mx:

m_x := Groebner[MultiplicationMatrix](x, B[1], B[2], G, tdeg(x,y,z));

mx =


−2

3

1

3

8

3

5

3

 .
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Analogously, we can compute

my =


4

3

1

3

8

3

11

3


and

mz =

 0 1

8 7

 .

We can find the solutions via the eigenvalue decomposition of the action matrices:

v_x := LinearAlgebra[Eigenvalues](m_x);

v_y := LinearAlgebra[Eigenvalues](m_y);

v_z := LinearAlgebra[Eigenvalues](m_z);

vx :=

 2

−1

 , vy =

 4

1

 , vz =

 8

−1

 .

These are the two solutions for x, y and z for the original system. We can check

them by evaluating the polynomials at those points:

eval(F,[x=v_x[1],y=v_y[1],z=v_z[1]]);

eval(F,[x=v_x[2],y=v_y[2],z=v_z[2]]);

[0, 0, 0]

[0, 0, 0],

and thus we have found the solutions.
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2.5 The Gröbner Basis Method

This section introduces the methods for developing solvers for polynomial systems

introduced by Stewenius [63, 65] as well as the later method by Byrod et. al [14].

While there are many different ways of solving a polynomial system via Gröbner

basis and elimination, these methods allows one to find a stable elimination path on

sample data in a finite prime field Z/p, and then use it to solve real problems in R.

The Stewenius method is the original method for solving minimal problems using

algebraic geometry, and the other methods described in this section are improvements

of this general framework.

2.5.1 Method Overview

Given a problem formulation as a polynomial system F = {f1, . . . , fk}, such as

ones described in section 2.2, we seek to exploit the inherent structure in the ideal

generated by the class of equations arising from this problem. We find a set of

equations from the I = 〈F 〉 (in the form of monomial multipliers of the equations

in F ), such that we can extract a Gröbner basis for the ideal by Gauss-Jordan

elimination on the matrix of coefficients. The monomial multiples of the original

equations can then be used as a template which is found once, and then applied to all

other instances of the problem (same algebraic structure, but different coefficients).

It has been shown that if we pose a problem over a finite field Z/p, we can

determine the dimension of the ideal by repeatedly sampling random coefficients

from the field until a stable number for the dimension is found. The stable dimension

(which implies a stable basis B for Z/p[x1, . . . , xn]), is, in general, equivalent for the

dimension of the original problem with coefficients from field of rationals Q [69, 35].

Given a starting set of equations, we will first analyze the problem in Z/p, and then
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use it to solve problems with coefficients in R. The exact nature of the generalization

from Q to R, however, is not clear from the literature.

Specifically, we perform the following steps:

1. Use computer algebra software to pose the problem as an ideal I in a finite

prime field Z/p, choosing p to be relatively large. Set the monomial order to

GrevLex.

2. Compute the dimension d of the quotient ideal Z/p[x1, . . . , xn]/I to determine

if it is zero.

3. Repeat the above steps for random coefficients from Z/p until we can determine

the dimension of an ideal. If it is 0, go to step 4.

4. If d > 0, find the infinite solution families, and saturate I with their solutions,

obtaining a 0-dimensional ideal.

5. Compute the Gröbner basis for I by adding all monomial multiples (up to

the degree of LT (I)) to the current generators of I, and performing Gauss-

Jordan elimination on the matrix. This step is repeated until a Gröbner basis

is obtained (which can be verified by the computer algebra software).

6. Repeat the above steps until a stable elimination path is found. This is essen-

tially a probabilistic process due to the usage of random coefficients and prime

fields.

7. Set up the matrix with real coefficients from R and perform the elimination.

8. From the resulting basis B for R[x1, . . . , xn]/I compute the action matrix (gen-

eralized companion matrix).
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9. Compute the solutions to the problem as eigenvectors of the action matrix.

Note that in this, and all other methods presented in this document, we use GrevLex

monomial order for all computations of the Gröbner basis. The equations that will be

added to the ideal in Step 5, along with the initial equations form an elimination

template. This template tells us how to get polynomials needed to construct a

Gröbner basis from initial polynomials. The porting of the coefficients to R means

using the polynomials with the same monomials as in the elimination basis, but with

coefficients from the actual problem. The Gauss-Jordan elimination of the template

then results in a Gröbner basis for the system. Similar elimination templates are

used in other methods described in later sections.

2.5.2 The 5-point Problem

For the 5-point pose problem, we start with 10 equations in 3 unknowns arising from

the trace and determinant constraints on the essential matrix. We form a matrix,

A, as a GrevLex-order, 10× 20 random matrix in Z/p.

The code snippet below illustrates this procedure in a computer algebra system

Macaulay2:

-- Create a polynomial ring in x,y and z with coefficients

-- in Z/30029

R = ZZ/30029[x,y,z];

-- Create essential matrix E as a function of x, y and z with

-- random coefficients in R

t = {1_R,x,y,z};

E = fold((a,b)->a+b, apply(4, i->t_i*random(R^3,R^3)));
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-- Define the trace and determinant constraints

TraceConstraint = 2*E*transpose(E)*E-trace(E*transpose(E))*E;

DeterminantConstraint = det E;

-- Define the ideal generated by these constraints

I = ideal(TraceConstraint)+ideal(DeterminantConstraint);

-- Determine the dimension and degree of I

dim I

degree I

Analysis with algebraic geometry software reveals the dimension of the ideal to

be 0, and the degree to be 10. This means that the variety, in general, consists of 10

points.

Since the rows of A turn out to be linearly independent in general, the Gauss-

Jordan elimination of A produces a Gröbner basis after the first elimination (i.e. no

additional equations need to be added). From this basis, and the 10×10 action matrix

is extracted, and the values for x,y and z are extracted from the 10 eigenvectors of

this matrix.

2.5.3 The 3-view Triangulation Problem

When the 3 polynomial constraints for this problem given in the last section are

analyzed in Macaulay2, it is revealed that the ideal formed by the polynomials is not

0-degree. This implies that there are families of solutions which need to be eliminated

prior to solving the system. The solution families occur when xyz = 0. In [65] it
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proposed that 3 partial saturation steps are used to eliminate the false solutions.

The steps correspond to saturating with x = 0, y = 0 and z = 0, performing

Gauss-Jordan elimination and updating the generators of the ideal at each step.

After the last elimination, we will get Gröbner basis for the ideal, and the 47-

dimensional basis for the quotient ideal R[x, y, z]/sat(I, x, y, z) from which we can

extract the action matrix mx, whose eigenvectors correspond to the 47 solutions for

x, y, and z.

2.5.4 Choosing the Correct Solution

Once the candidate solutions have been found, it is a relatively simple matter to

choose the solution which corresponds to the physical configuration of the cameras.

The technique used to disambiguate the solutions is to take an additional point

correspondence constraint, and check which solution fits this constraint best. This,

of course, assumes that the additional point is not an outlier, which makes the entire

process less robust.

2.5.5 Comparison to Other Methods

In the case of the 5-point relative pose problem, the Stewenius method was reported

to compare favorably to the original hand-designed method by Nister [52] in terms

of numerical accuracy. The histogram of the numerical errors for both methods is

shown in Figure 2.5.5.

Since the 3-view triangulation was first solved by this method, we will use the

experiments from [13] which show that the 95th percentile distance from the true

point was 15.1 units for test cases of cameras and points being distributed in a 1000

unit cube around the origin. The paper reports an improvement of a factor of 106
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6.1. EXPERIMENTS

Numerical precision

In order to investigate the precision of the five-point algorithms, we examine the numer-
ical error on synthetic data in noise-free yet geometrically realistic conditions. For the
purposes of numerical testing, we use the minimal set of five points. Note that more
points only affect the computation of the initial null space, performed by singular value
decomposition, which is known to be numerically stable. Since the algorithms produce
multiple up-to-scale solutions for the essential matrix, we compute the error measure

min
i

min(‖ Êi

‖Êi‖
− E

‖E‖‖, ‖
E

‖E‖ +
Êi

‖Êi‖
‖), (6.2)

where Êi are the ten estimated essential matrices, and E is the true essential matrix. In
each case, we sample 50000 minimal sets of points and record the resulting numerical
errors.
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Figure 6.1: Distribution of the numerical error of the five-point methods for sideways
motion under normal conditions. Left: Previous method. Right: New method. The
median numerical error of the previous method is 1.9466e-14, while the median error
for the new method is 1.6351e-14. Note that almost all errors for our method is below
10−10 while this tail is larger for the old method.

We construct the configurations of cameras and points using the following parame-
ters: number of points, scene depth, scene distance, scene width, baseline, and motion
direction. We set the first camera at the origin and randomise scene points uniformly
inside a block straight in front of it. The block starts at the scene distance, and the thick-
ness of the block is the scene depth. The second camera is positioned according to the
motion direction and baseline and is oriented toward the centroid of the scene points.
As the default conditions for all the tests, the distance to the scene from the camera is 2,
as is the width of the scene, which translates to a field of view of about 53 degrees. The
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Figure 2.7: Distribution of the numerical error for the 5-point algorithm using the
Nister method (left) and Stewenius method (right). The experiment has 50000 error-
free, minimal cases. The numerical error was likely computed as the Frobenious norm
of the difference matrix between the true and computed poses [65].

with the “change of basis” method presented in section 2.6.

2.5.6 A Fast and Stable Method for Geometry Problems

The action matrix method is one of the key ways of solving systems of polynomial

equations. In this section we describe a method due to Byrod et. al. [13, 14].

This method was a key development in the application of algebraic methods to

computer vision because it provided a stable way of generating “solution templates”

for a variety of previously unaddressed problems, as well as improving accuracy of

existing methods.

As we mentioned previously, a univariate polynomial can be solved using eigen-

value decomposition of a companion matrix and the action matrix is a multivariate

equivalent of the companion matrix. The idea is to find a linear operator Tp for

some p ∈ K[x] that represents the multiplication by p in the vector space defined

by K[x]/I, i.e., Tp : f(x) → p(x)f(x). If we select a basis for this vector space, we

can represent Tp as a matrix mp with entries in K. It was shown in [18] that λ is
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an eigenvalue of this matrix if and only if λ is a value of the function p evaluated on

the variety V of the ideal. This means that if we set p = xk, we can find the value

of xk which satisfies the initial system of equations. We can also determine the so-

lutions through eigenvectors. It is known that the eigenvectors of the action matrix

represent the scaled solutions to the same problem. We can also determine the scale,

because the monomial 1 is always in the basis for zero-dimensional varieties.

Finding the dimensionality and basis for this vector space is the first step in re-

covering solutions. The dimensionality immediately tells us the number of solutions,

while the basis is important in the action matrix computation. One way of obtaining

these two quantities is through division of polynomials in K[x] by the Gröbner basis,

which is a special basis for the ideal, division by which cancels out all the possible

leading terms of the polynomials in the ideal.

Computing a Gröbner basis using finite precision arithmetic, however, is known to

be a numerically unstable process. However, algorithms developed by Traverso in[69]

allow us to analyze the ideal generated by our system using coefficients from a prime

field K = Z/r (integers modulo r), where r >> 7 is a prime number [35]. Since this

field is finite, the computation with polynomials with coefficients in Z/r (including

Gröbner basis) is exact. The algorithms ensure that if a stable Gröbner basis is

found in this field under repeated trials with random coefficients, the monomials will

remain the same when we change the field to Q with some probability. In our case,

we only need the Gröbner basis for one system, F , and it is easy to check when we

have it. Once a Gröbner basis G is found, a linear basis for the quotient space can

be formed by the monomials in the remainder after division by G.

In order to use efficient linear algebra techniques to manipulate the system (4.3.2)-

(4.3.3), we rewrite it as follows:

CX = 0,
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where C is a matrix whose columns contain coefficients of the monomials, and X is

the vector of monomials corresponding to the columns of C. It should be noted that

the ideal is closed under row operations on C.

We will follow the method outlined in [14], which allows us to build the action

matrix without constructing a Gröbner basis (we will still analyze the system and

extract its Gröbner basis in the finite field for the purposes listed above). We briefly

describe their method here. The key idea is to determine the so-called solving basis

B (in our case, we use the monomial basis for the quotient ring), and the required

monomials R = xkB\B. Specifically, our objective is to find the minimum number

of monomials needed to construct the action matrix, and then re-arrange the matrix

such that those monomials, along with the basis monomials, occupy the last columns

of the matrix. Using algebraic geometry software we can find a candidate linear basis

B for the quotient space. For the action matrix corresponding to multiplication by xk,

the set of monomials that need to be expressed in terms of B is the set R = xkB\B.

The rest of the monomials in the system are called E . The polynomial system with

coefficients C can then be expressed as follows:

CX =

[
CE CR CB

]
XE

XR

XB

 = 0.

The only requirement on this coefficient matrix, after this matrix is put into the

row-echelon form, is that its |R| × |R| submatrix corresponding to the monomials

in R and the last |R| equations has full rank. This submatrix is called CR2 in [14].

When we discuss our solution, we will illustrate how to use this matrix to extract

the action matrix. The complete details are found in [14].
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The initial set of equations F is unlikely to have a coefficient matrix C that meets

the above requirement. This is where we will draw on the ideal members to expand

the original system with additional equations, until the requirement on the action

matrix construction is satisfied. The technique to generate ideal members efficiently

proposed in [35] involves multiplying the original polynomials by monomials starting

with the lowest orders. This operation, when applied to an equation (a row of C),

will result in the coefficients from that row to be shifted to the left in the matrix to

take their places in columns corresponding to their new monomials. We will continue

adding polynomials (checking for linear dependence and unneeded ones), until C is

large enough to produce a full rank CR2. We call the resulting set of polynomials

(which are monomial multiples of the original system) an elimination template, and

and matrix C an elimination matrix. This part of the process can be done with

coefficients drawn randomly from Z/r.

2.5.7 Example: Elimination Template Construction

In this section we present a complete example of the basic method from Byrod et.

al. This particular example does not use the “solving basis” technique, where XB

is larger than the basis for the quotient ring, but merely illustrates the basic flow

of the algorithm. Let us assume that we have derived a polynomial system for our

geometry problem and that it consists of three equations in three unknowns:

f1 ≡ c1y + c2x
2 (2.5.1)

f2 ≡ c3z + c4x
3 (2.5.2)

f3 ≡ x + c5y + c6, (2.5.3)
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where the coefficients ci are given. In a computer vision geometry problem, the

coefficients would come from feature locations, such as image or space points. This

system is visualized in Figure 2.5 and consists of three ruled surfaces, a cubic, a

quadratic and a plane. As we mentioned in Section 2.4.10, this system generates a

zero-dimensional ideal and has two solutions, in general.

Given this system, we will construct a “solution template” which will solve it for

x, y and z, given coefficients ci ∈ R, i.e. for any instance of the problem.

Let us once again verify that this system is zero dimensional and compute the

number of solutions. To do this, we must compute the Gröbner basis of the ideal

generated by f1, f2, f3 using coefficients from a prime field Z30029 using Maple. We

must do this multiple times using random coefficients in order to ensure that the

structure of the basis is stable (the structure could be due to unwanted cancellations).

The Gröbner basis is

y + 20018 + 20019z (2.5.4)

x + 20020 + 20019z (2.5.5)

z2 + 30021 + 30022z. (2.5.6)

From the basis we can see that the ideal is zero-dimensional (powers of all variables

appear in LT (I)) and that there are two solutions in general (non-leading monomials

span a two-dimensional vector space), as we saw in previous sections. We also observe

that the basis monomials are XB = [z, 1]. Let us use x as the action variable xk

above. The set of required monomials becomes XR = xXB = [xz, x]. Our goal

is now to find a set of polynomials in the ideal 〈f1, f2, f3〉 that express the basis

48



monomials in terms of the required monomials:

[
I −A

]XR

XB

 = 0. (2.5.7)

However, our original system does not have this form. Written in matrix form

CX = 0, the system is


0 c2 0 c1 0 0

c4 0 0 0 c3 0

0 0 1 c5 0 c6





x3

x2

x

y

z

1


= 0 (2.5.8)

In order to gain the needed equations, we augment our original system with multiples

of the original equations (since those belong to the ideal). This process must also be

implemented in Maple. The steps of the template generation are as follows:

1. Add multiples of equations fi to the system, starting with the lowest order

(xfi, yfi, zfi).

2. Generate the coefficient matrix C for the resulting system and fill in the coef-

ficients from a prime field, such that {c1, . . . , c6} ∈ Z30029.

3. Arrange the columns of the coefficient matrix such that C =

[
CE CR CB

]
,

as described in the previous section.

4. If, after Gaussian elimination, the system does not have |R| linearly indepen-

dent equations of the form (2.5.7), repeat from Step 1.
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5. If multiple equations were added in Step 1, remove equations one at a time

and perform the Step 2 test.

6. Repeat Steps 1 through 4 several times with different coefficients to make sure

that the results are not due to unwanted cancellations.

7. Once the smallest number of equations has been found and the stability has

been verified in Step 4, output the C matrix of the resulting system, after

substituting the symbolic coefficients ci.

For the system in this example, the resulting equations are {f1, f2, f3, f1x, f2x, f3x,

f1x
2, f3x

2}, from which we can construct the elimination template Celim and mono-

mial vector Xelim:

CelimXelim ≡



0 0 0 c2 0 c1 0 0 0 0

0 c4 0 0 0 0 0 0 c6 0

0 0 0 0 0 c5 0 1 0 c6

0 c2 0 0 c1 0 0 0 0 0

c4 0 0 0 0 0 c6 0 0 0

0 0 0 1 c5 0 0 c6 0 0

c2 0 c1 0 0 0 0 0 0 0

0 1 c5 c6 0 0 0 0 0 0





x4

x3

x2y

x2

xy

y

xz

x

z

1



. (2.5.9)

Notice that the basis monomials XB are the last two elements of the monomial vector

(corresponding to the last two columns of the coefficient matrix) and the required

monomials XR are the third and forth from last elements (corresponding to the third

and forth from last columns of C).
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We now have all the elements we need to solve the original system:

1. The elimination template matrix Celim.

2. The list of basis monomials XB = [z, 1].

3. The list of required monomials XR = [xz, x].

Let us now demonstrate how to solve an instance of our problem using the tem-

plate above by solving the system

f1 ≡ 2.5y − 1.1x2 (2.5.10)

f2 ≡ 2z − x3 (2.5.11)

f3 ≡ x− 3y + 2. (2.5.12)

(2.5.13)

We must perform the following steps:

1. Populate the elimination template Celim with given coefficients ci:



0 0 0 −1.1 0 2.5 0 0 0 0

0 −1 0 0 0 0 0 0 2 0

0 0 0 0 0 −3 0 1 0 2

0 −1.1 0 0 2.5 0 0 0 0 0

−1 0 0 0 0 0 2 0 0 0

0 0 0 1 −3 0 0 2 0 0

−1.1 0 2.5 0 0 0 0 0 0 0

0 1 −3 2 0 0 0 0 0 0



. (2.5.14)
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2. Perform numeric Gauss-Jordan elimination or LU decomposition on the result-

ing matrix. The results of Gauss-Jordan elimination are below.



1 0 0 0 0 0 0 0 −2.6140 −1.6650

0 1 0 0 0 0 0 0 −2.0000 0.0000

0 0 1 0 0 0 0 0 −1.1501 −0.7326

0 0 0 1 0 0 0 0 −0.7252 −1.0989

0 0 0 0 1 0 0 0 −0.8800 0.0000

0 0 0 0 0 1 0 0 −0.3191 −0.4835

0 0 0 0 0 0 1 0 −1.3070 −0.8325

0 0 0 0 0 0 0 1 −0.9573 0.54945



(2.5.15)

3. Construct the action matrix from the bottom right 2× 2 sub matrix, which is

the negative of the action matrix:

A =

1.3070 0.83250

0.9573 −0.54945

 . (2.5.16)

4. Extract the eigenvectors of A:

0.91800

0.39657

 ,

−0.35166

0.93612

 (2.5.17)

5. The eigenvectors correspond to the scaled values of XB = [z, 1]>, thus we can

extract the value for z:

z = {0.91800/0.39657,−0.35166/0.93612} = {2.31481,−0.37565} (2.5.18)
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6. The values of x, which was our action variable, are the eigenvalues of A:

x = {1.66667,−0.90909} (2.5.19)

7. The values of the remaining variable, y can be obtained by back-substituting

the values of x and z:

y = {1.22222, 0.36364} (2.5.20)

The above procedure makes it clear that the major computational steps of the

process, as the size of the basis (number of solutions) and size of the template matrix

Celim rise are the Gaussian elimination of the template matrix and the eigendecompo-

sition of the action matrix. In the next chapter, we use this method as the baseline

and speed up the Gaussian elimination by constructing an equivalent but smaller

elimination template.

2.5.8 Discussion

The Stewenius method set the guidelines for systematic construction of the elimina-

tion templates in computer vision. It was also the first method by which the optimal

3-view triangulation problem was revealed to have at most 64 solutions and solved.

There are two main problems with this method, both of which are addressed in the

next section: numerical stability, and the need to change the way the template is

computed based on problem formulation.

This method does a good job of constructing a stable Gröbner basis for the

problem by using the very stable Gauss-Jordan elimination. However, numerical

stability of this method is not guaranteed because we have done nothing to ensure

that the eigenvalue decomposition of the action matrix is numerically stable. In
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fact, the implementation from the original paper has to rely on 128-bit floating

point arithmetic for this computation.

That instability was addressed directly by the “solving basis” method described

in [13].

The second problem is that the process of constructing an elimination template

is largely manual for new problems. One has to look at the emerging basis and add

polynomials if needed, and take out ones that are redundant. There is now a method

in the literature to do this automatically for any zero-dimensional ideal [35], which

will be presented in the next section.
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2.6 Advanced Action Matrix Optimizations

In this chapter we present some of the state-of-the-art techniques aimed at improv-

ing numerical accuracy and automating the process of generating the elimination

templates for computer vision problems.

2.6.1 A Gröbner-free Alternative

It turns out that the full Gröbner basis is not required for the computation of the

action matrix. In this chapter we present methods that use this fact to construct

more efficient elimination templates. As before, we analyze the given system of

equations using coefficients from Z/p to obtain the Gröbner basis, and the basis B

for the quotient ring A.

As we said before, the monomials in the basis will be the same for all instances

of the problem, and only the coefficients will change. It was also noted in [13, 38]

that the only elements of I needed to calculate the action matrix matrix mf are in

the set R = {f ∈ I : LM(f) ∈ xi · B \ B}. These two facts allow us to compute the

polynomials needed to compute the action matrix.

Given a basis B = {xα(1), . . . ,xα(N)}, the polynomials needed to compute the

action matrix take the following form:

qi = fxα(i) + hi, (2.6.1)

where hi =
∑N

j=1 cjix
α(j) ∈ A. Let the operator Tf (f

′) be the image of f ′ under mf .

It was shown in [18] that to compute the action matrix, we need to compute the

multiplications of the polynomial f by the basis members Tf (x
α(i)) = fxα(i)

G
for all

xα(i) ∈ B.
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We can pre-compute all columns of mf corresponding to the monomials xα(i) for

which fxα(i) ∈ A. For the other monomials where fxα(i) /∈ A, we have to choose qi

from I such that hi ∈ A. For the multiplication by these monomials, we have

Tf (x
α(i)) = fxα(i)

G
= qi − hi

G
= −hi ∈ A. (2.6.2)

The polynomials qi can be generated as combinations of the initial generators F under

ideal operations (addition and multiplication by polynomials from C[x1, . . . , xn]). As

a member of A, hi must be of the form

hi =
N∑

j=1

cijx
α(j) (2.6.3)

with cij ∈ C, and the coefficients cij are the corresponding elements of the action

matrix. We must then construct our polynomials qi to be of the form

qi = fxα(i) +
N∑

j=1

cijx
α(j) (2.6.4)

for the specified subset of B with non-trivial remainders modulo I from polynomials

in F .

We generate these polynomials by a method similar to the one we used in Chapter

2.5 to add polynomials to create a Gröbner basis, except this time we only generate

the polynomials corresponding to the non-trivial columns in the action matrix.

2.6.2 Construction of an Optimized Elimination Template

We use the algorithm to construct qi given in [35]. Given an initial set of polynomials,

and the results of the analysis in Z/p (as described in the Chapter 2.5), including
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the quotient ring basis B, compute

1. Generate all monomial multiples xαfi of degree ≤ d where fi ∈ F .

2. Construct a matrix CX = 0 of polynomials xαfi

3. Perform Gauss-Jordan elimination of C.

4. Test the form of all polynomials. If all polynomials qi have been added, stop.

5. Increment d, and go to 1.

This algorithm can be used to construct the action matrices from the initial set

F automatically.

2.6.3 Reducing Template Size

Adding polynomials blindly has the disadvantage of potentially adding many more

polynomials than necessary. The method proposed in [35] deals with this problem

by eliminating subsets of polynomials and using the sparse Gauss-Jordan elimina-

tion. If the wrong polynomials were removed, the resulting matrix will not contain

polynomials qi. Since we know the monomials in qi from 2.6.1, we can check if the

resulting system contains equations with these monomials with non-zero coefficients.

The same paper proposes a heuristic for removing subsets of polynomials. If we

successfully remove k polynomials, we try to remove 2k polynomials on the next

step. If we failed, we try to remove 1
4
k polynomials.

2.6.4 Using Eigenvalues of Action Matrices

A approach described in Chapter 2.4 of Cox et. al [18] uses a single action matrix

mf to recover the solutions to the system as the left eigenvectors of mf . However,
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some solutions to the original system can be extracted from the eigenvalues of of

mf , and those eigenvalues correspond to the values of f on V(I) as well. So, com-

puting eigenvalues of the n action matrices for f1 = x1, . . . , fn = xn also gives a

complete set of solutions to the system (see Chapter 2.4). Byröd el. al [13] demon-

strated that this method is more numerically stable, but at a small computational

cost. Their observation is that since mfi
are computationally simple to construct

and share the same eigenvectors, we can quickly extract the eivenvalues of all mfi

from an eigenvalue decomposition of mf1 as follows. We perform the eigenvalue de-

composition of mx1 = V Dx1V
−1. Then we can extract eigenvalues of mxi

from the

relation mxi
V = V Dxi

by matrix multiplication.

2.6.5 Discussion

In this chapter we presented some optimization techniques which improve numerical

stability and accuracy of the basic Gröbner basis procedure.

The results presented in [35] show that the templates constructed using the au-

tomatic template generation techniques (Section 2.6.2) can be smaller than the cor-

responding Gröbner basis template, however, the computation times are unlikely to

be low enough for real-time operation in a RANSAC framework for many larger

problems, such as three-view triangulation.

The action matrices are only easy to construct if we compute the full Gröbner

basis. We cannot extract an action matrix for an arbitrary f from the reduced basis

computed via 2.6.2, which is what is required to use eigenvectors in Section 2.6.4. If

we used N iterations of the reduced method, there may be a significant additional

computational cost to gain the numerical advantage associated with the eigenvector

method. However, this has not been evaluated in the literature.
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2.7 Conclusions

The algebraic geometry solutions have found applications in geometric computer vi-

sion, however, none of the presented methods are currently in wide use if alternative

formulations (such as closed-form solutions) are available owing to the high compu-

tational requirements. For example, the standard method for 3-view triangulation

only requires an SVD of a 6 × 4 matrix, followed by local iterative refinement of

the estimate. The results section of [65] compares this method to the Gröbner basis

method, and finds accuracies to be similar. For the 5-point pose problem, the stan-

dard in efficiency is still the hand-derived method of [52], which does not require us

to determine eigenvectors of an action matrix, but merely to find the real roots of

a 10th degree polynomial in one variable (which can be done very fast using Sturm

sequences). The Nister method has slightly lower accuracy, but the Frobenius norm

of differences between real and estimated poses is still on the order of 10−10 instead

of 10−13 for the Stewenius method.

There are, however, many problems for which alternatives are not currently avail-

able. These include various methods for estimating relative pose with unknown

camera parameters (such as the 3D stitching with unknown focal length and radial

distortion), as well as some problems for generalized cameras.

These methods can also be useful in the cases where just a few features can be

localized and tracked very precisely, such as in augmented or virtual reality work-

stations and motion capture systems. In this case, solving for a minimal number of

constraints with highest possible accuracy will be fast enough for real-time operation.

In the context of a hypothesize-and-test framework, the higher accuracy afforded

by the methods presented is often not required, after all the answer still comes from

only a few points, so it is rarely used as the final answer. Instead, an iterative
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refinement which includes all inliers (as determined by RANSAC) is performed to

improve the stability of the estimate using the minimal solution as the starting point.

Since the minimal solution has to be computed many (sometimes hundreds) of times,

speed is of the essence. When the presence of error in image feature localization is

taken into account, price paid for the high accuracy of the existing Gröbner basis

methods seems excessive. In the next chapter we will propose a method for further

optimizing the techniques to yield not only additional computational benefits, but

further improved numerical stability.
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Chapter 3

Polynomial Solver Optimizations

3.1 The Need for Optimization

Since its introduction, several improvements to the action matrix method have been

devised to address its numerical shortcomings [13] and ease of use [35]. While the

action matrix method has been able to provide satisfactory (and in many cases the

only) solutions to a range of problems, it still suffers from two main drawbacks:

computational complexity and numerical accuracy. In this chapter we present a

novel optimization of the state-of-the-art action matrix method by Byröd et. al [14]

detailed in the last chapter in Section 2.5.6 with an example in Section 2.5.7 for

solving geometry problems.

Once an elimination template consisting of Celim, XR and XB for a problem has

been constructed, the main computational steps of the action matrix approach are:

matrix decomposition (such as LU or QR) of a polynomial coefficient matrix in order

to express one set of monomials in terms of another and construct the action matrix,

and an eigenvalue decomposition of the action matrix to find the solutions. The

size of the eigenvalue problem is typically related to the number of solutions, so the
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computational complexity of that part cannot be significantly reduced. The matrix

used in the LU decomposition typically comes out of the structure of underlying

problem and can be quite large. In this chapter we show that under some conditions,

it is possible to reduce significantly the size of this matrix while guaranteeing that the

algebraic structure of the problem is not affected. Since matrix decompositions are

typically O(n3) operations, a reduction in its size produces a significant performance

gain.

The numerical stability issues with the action matrix method are also well known.

Several methods have been proposed to address this problem directly, such as using

a redundant solving basis and basis selection by SVD or QR decomposition [13], but

the underlying problem is the size of the LU or QR decomposition, and matrix condi-

tioning issues associated with it. We will consider a specific problem of 3D panorama

stitching with unknown focal length and radial distortion to demonstrate experimen-

tally that after using our method to reduce the size of the matrix decomposition,

numerical accuracy improves significantly. We show that the improved method is

accurate even with single-precision arithmetic, which makes a fast implementation

on a smartphone possible.

We will show the effectiveness of our approach on real imagery and demonstrate

that in the case of RANSAC-based image stitching, our improved template can

achieve good single-precision accuracy, while the state-of-the-art method fails to

produce a solution due to round-off errors.

We first presented this work in [48].
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3.2 The Current Action Matrix Method

We will briefly review how a polynomial template matrix is generated before pro-

ceeding to derive the conditions for its simplification. The method was described

in detail in the last chapter and in [14, 36]). Let F = {f1...fn} be a set of poly-

nomials in variables x = x1 . . . xl. The polynomials F generate an ideal I, and we

assume there exists a finite-dimensional quotient space R[x]/I, thus the system F

has a finite number of zeros. The aim of the action matrix method is to construct

a matrix in the quotient ring space that multiplies polynomials by xk, i.e. matrix A

such that xkv
>X = A>v>XB, where v>XB ∈ R[x]/I and XB is a monomial basis

for R[x]/I. The solutions to F = 0 are extracted from the eigenvalues of A. Since

this expression is valid for any polynomial in the quotient space we obtain

xkXB = A>XB, (3.2.1)

which suggests that we can construct the action matrix by finding a set of polynomial

equations which express the monomials xkXB in terms of the basis monomials.

We identify the basis, required and extra monomial subsets. The basis monomials

B constitute a linear basis for the quotient ring R[x]/I (although B can include other

monomials when the redundant solving basis method is used, see [14], Section 4), and

the required monomials are R = xkB \B. The extra monomials E are the remaining

monomials.

The solver generation usually proceeds as follows: the initial polynomial system

F is extended with additional equations from the ideal I = 〈F 〉. These equations

are found by multiplying the equations from F by monomials, starting with lowest
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order. The final system has the following form

CX = 0, (3.2.2)

where C is a matrix of polynomial coefficients of size n ×m and X is the vector of

all monomials in the extended system.

We rearrange the columns of the system as follows

CX =

[
CE CR CB

]
XE

XR

XB

 = 0. (3.2.3)

If a sufficient number of polynomials was added to the original system F , the

action matrix can be found by performing LU decomposition of C. The starting

point for our optimization is such a system with basis, required and extra monomials

identified. We refer to this as an elimination template.

3.3 The Conditions for Template Simplification

First, we show under what circumstances we can separate the system CX into two

sets of columns and stay in the ideal after elimination of one of the sets. This is

a technical condition required for Lemma 2. We denote by C\jX\j the system CX

with column cj and the corresponding monomial xj removed.

Lemma 3.3.1. Let C be a full-rank matrix of polynomial coefficients and X a vector

of monomials, such that CX is a set of n polynomials which generate an ideal I. Let

cj be a column of C. Let C\j = LU be the LU decomposition of C\j. Then the
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polynomials

UX\j + L−1cjxj (3.3.1)

are also in I.

Proof. The matrix L−1 is a product of elementary lower triangular matrices (see [44]

p.142), and thus the transformation L represents only row operations. Since applying

row operations to C will keep the equations in the ideal, the following statements

are true:

CX ∈ I

C\jX\j + cjxj ∈ I

LUX\j + cjxj ∈ I

L−1(LUX\j + cjxj) ∈ I

UX\j + L−1cjxj ∈ I,

(3.3.2)

which is the needed result.

This lemma will be used to show that the equations stay in the ideal even after

certain columns are removed. We now show that given C, it may be possible to

compute the LU decomposition of a matrix smaller than C. We will now state and

prove a condition under which we can remove a row and a column of C and still

maintain the properties needed for successful elimination.

Lemma 3.3.2. If there exists a column cj of the polynomial coefficient matrix C

that satisfies the following two properties:

1. It corresponds to one of the extra monomials XE , i.e. cj ∈ CE

2. It can be expressed as a linear combination of the first m− |R| columns
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then the matrix C\j can be used to expressing the required monomials R in terms of

basis monomials B via its LU decomposition.

Proof. The need for property 1 is clear since discarding a column corresponding to

either a required or basis monomial will result in the corresponding terms missing

from the equations.

To show the sufficiency of property 2, let us move cj to the right-hand side in

the original system:

[
CE\j CR CB

]
XE\j

XR

XB

 = −cjxj. (3.3.3)

After LU factorization of the left-hand side matrix C\j = LU the system becomes

L

 UE\j CR1 CB1

0 UR CB2




XE\j

XR

XB

 = −cjxj, (3.3.4)

where UE\j and UR are upper-triangular matrices. Multiplying by L−1 from the left,

we obtain  UE\j CR1 CB1

0 UR CB2




XE\j

XR

XB

 = −L−1cjxj. (3.3.5)

Where the polynomials formed by the rows belong to the original ideal by Lemma 1.

Since we need exactly |R| equations where the basis monomials are expressed in

terms of required monomials, the last |R| elements of the vector L−1cjXEj must be 0

(then the corresponding equations will not include any terms with xj). Let us show
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that this is implied by property 2.

Let us rewrite property 2 as

cj = a1c1 + ... + aj−1cj−1 + aj+1cj+1 + ... + am−|R|cm−|R|, (3.3.6)

where ck are the first m− |R| columns of C\j. The lower triangular matrix L−1 acts

on ck as follows: it annihilates elements below k (since L−1C\j is an upper triangular

matrix). Thus the right hand side of the equation is

L−1cjxj = a1



•

0

0

...

0


xj + . . . + am−|R|



•
...

•

0

...

0


xj, (3.3.7)

where the last vector has zeros in the last |R| positions.

The above lemma allows construction of a smaller matrix on the left-hand side

of the system (3.2.2) by moving terms to the right-hand side and guarantees that

the right-hand side will be zero in the last |R| equations.

While removing whole rows (equations) will keep the remainder in I, the ideal

generated by the resulting set will be smaller if the lowest order generators are

removed. We can now define excess columns as well as excess row-column pairs,

removal of which will not affect the elimination.

Definition 3.3.3. An excess column cj of C is a column that satisfies Lemma 2,

and an excess pair of C is a row ri of C and a column cj, such that cj is a column
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of C with ri removed that satisfies Lemma 2.

The proposed optimization of elimination templates will make use of the Lemma 2

to find excess columns and pairs. At this point it is clear how we should proceed:

we will first test each column to see if it can be safely moved to the right-hand

side of the equation CX = 0 and then, when no excess columns are found, we test

all row-column combinations. The progressively smaller matrix will retain the full

left and right hand sides, such that at any point all the equations in it are in the

ideal. Since we will be operating with specific instances of the problems (symbolic

elimination is impossible for most templates), we will have to verify the resulting

template thoroughly for numerical stability and repeat the process as necessary to

achieve a good template.

We now proceed to illustrate this process step-by-step with an example.

3.4 Example: Three-point Panorama Stitching

As an example, we demonstrate how to reduce the size of the elimination template for

the problem of estimating panoramic stitching parameters in the case of unknown

focal length and radial distortion [11]. In this problem we estimate the rotation

between two views and the common focal length and radial distortion coefficient. The

formulation of this problem as a polynomial system was presented in the previous

chapter and the details can be found in the original paper as well as in Section 2.3.3

of this dissertation. As part of this work, we implemented the optimization as a

modification of an existing implementation available from Lund University. 1

1The original code is found at http://www.maths.lth.se/vision/downloads/data/stitching3pt.zip.
Our optimized code is at http://www.cis.upenn.edu/˜narodits/Site 3/Solver Optimization.html.
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Figure 3.1: Structure of the template as described in [11].

3.4.1 Eliminating Excess Columns

The template for this problem consists of 90 equations in 132 monomials, and is

solved using the redundant solving basis method and QR decomposition of a 90×100

matrix in order to create a numerically stable basis. The structure of the template

is shown in Figure 3.1. It is arranged such that C =

[
CE CR CB

]
, where

|E| = 100, |R| = 7 and |B| = 25. Thus the system has 25 solutions and will be

solved via eigenvalue decomposition of a 25× 25 action matrix.

We will now show how to use the results in Section 3.3 to reduce the size of

this template. One way to identify excess columns present in the initial template

is via Gaussian elimination with partial pivoting. The eliminated matrix has the
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Figure 3.2: Structure of elimination template after Gaussian elimination.

structure shown in Figure 3.2. It is important to note at this point that since

symbolic elimination of such a large matrix is not practical, the matrix structure

above is from a “typical” numeric example. While cancellation pattern and structure

of a symbolic Gaussian elimination will always be the same (since the relationships

between all matrix entries are fixed), a numeric elimination may encounter problems

with precision (especially in the lower right part of the matrix), and thus give different

structure for different instances of the problem. We must try many instances until

a stable row-echelon form of C is found.

In the structure above we can immediately observe columns which have zero

pivots. These columns, namely [19, 28, 38, 39, 48, 49, 58, 59, 60, 69, 70, 79, 80, 88], cor-

respond to excess columns and can each be expressed as a linear combination of the
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previous, extra columns, and thus by Lemma 2, they can be eliminated from the

matrix. At this point the template matrix is 118× 90.

3.4.2 Eliminating Excess Pairs

For the second round of optimization, we will find excess pairs by testing each row

and column. This is accomplished by systematically removing a row of C, and for

each column corresponding to an E monomial, computing the vector L−1cjxj, as in

equation (3.3.5) and checking if the R monomials have zero coefficients. If the num-

ber of zeros is greater than or equal to |R|, then the row is removed and the column

is moved to the right-hand side. We repeat this process on the resulting left and

right hand side matrices until a smallest size left-hand side matrix is found. Once

again, the numerical stability of this process is an issue, and a sufficient number

of instances must be tried in order to ascertain the quality of the resulting tem-

plate. This optimization round allowed us to create a stable template of size 54× 77

with QR decomposition being performed on a 54 × 45 matrix. The structure of

the optimized template is shown in Figure 3.3. We now list the complete set of

excess rows and columns which can be used to reproduce our results. The original

90 × 132 matrix is constructed in the function setup 3pt.m of the aforementioned

code. After arranging the matrix as C =

[
CE CR CB

]
, we remove the columns

[1 . . . 5, 9 . . . 14, 18 . . . 23, 27 . . . 32, 37 . . . 42, 47 . . . 52, 57 . . . 62 68 . . . 72, 78 . . . 80,

88] and rows [1 . . . 30, 73 . . . 78]. After this, the elimination proceeds as before,

except we must adjust the indices m_ind to compensate for a smaller matrix.
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Figure 3.3: Structure of the template after optimization.
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3.4.3 Numerical Stability

The numerical stability of the resulting template is verified in Figures 3.4 and 3.5.

We observe that the performance is almost identical in both the noise-free and noisy

cases on a large set of randomly generated configurations. In terms of computational

performance, the average QR decomposition time decreased from 1.1ms to 0.24ms,

which translates into a doubling of overall performance when matrix inversion and

eigenvalue decomposition are taken into account.
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Figure 3.4: Noise free, double precision experiment for the three-point stitch problem.
Comparison of the orders of magnitude of reprojection errors between solutions to
105 noise-free instances. Reduced template is dashed red and the original template
is solid blue.

Aside from speed, the other significant advantage of our new template is its

numerical stability under single precision arithmetic. Due to the smaller size of our
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Figure 3.5: Noisy, double precision experiment for the three-point stitch problem.
Comparison of the orders of magnitude of reprojection errors between solutions to
105 instances. The points are contaminated with 0.01 standard deviation noise in
the normalized image plane. The dashed, red plot was generated with the reduced
template and solid, blue with the original. The solutions obtained by both templates
are very close, which shows that we did not compromise numerical stability of the
algorithm by reducing the size of the template.

template, the round-off errors are not as significant. The comparison of the two

templates in single precision is shown in Figure 3.6. The original template is not

usable in single-precision arithmetic with a 4300 of 10000 cases failing to produce

the correct solution. In contrast, the reduced template failed in only 224 cases. The

single precision implementation used single precision for QR decomposition, matrix

division and eigenvalue decomposition. It is clear that for the original template, it

is the 90× 100 QR decomposition that turned out to be unstable.
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Figure 3.6: A noise-free, single precision experiment for the three-point stitch prob-
lem. The graph shows the comparison of the orders of magnitude of reprojection
errors between solutions to 105 instances of the problem. The dashed, red plot was
generated with the reduced template and solid, blue with the original. This plot
demonstrates that only our reduced template can be used with single precision since
in about 4300 cases the original template fails completely.

3.4.4 Experimental Results

Finally, we verify performance of the reduced template on real images. In Figures 3.7

and 3.8 we show the panoramas generated with our new template with single preci-

sion arithmetic. The procedure to generate these results was was follows: 1) detect

SIFT [41] features on the two images and match them, 2) run a RANSAC process on

the subsets of the matches and output the best hypothesis, and 3) warp the images

using the hypothesis.
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On the feature points shown, both double precision implementations produced

similar results, however, the single precision implementations differ dramatically. Of

the 300 generated hypotheses, the original template failed to find any solutions in

297 cases (the remaining 3 cases gave wrong solutions) and the reduced template

only had 43 such failures (for the images in Figure 3.8).

Overall, we can conclude that the reduced template is stable and can be applied

to real-world images, even on single precision hardware, such as a smartphone.
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Figure 3.7: The matched SIFT features on the cell phone images and the resulting
panorama generated with single precision arithmetic using the reduced template and
RANSAC. The performance was similar for the double precision in both templates,
however, the single precision original template did not produce a valid hypothesis
after 200 iterations. No bundle adjustment or image blending was applied, hence
the panorama is generated with a single three-point hypothesis.
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3.5 Example: Optimal Three-view Triangulation

The problem of L2-optimal, three-view triangulation is a classic problem that is

solved by the action matrix method. First solved by Stewenius et. al in [65] in

256-bit arithmetic, this problem was revisited by Byrod et. al [12] and solved with

double precision arithmetic. With its 47-dimensional linear basis, this problem is

difficult to optimize, however, we still manage to improve performance slightly. We

base our implementation on the freely available version from Byrod. 2

3.5.1 Polynomial Model

As we mentioned in Chapter 2, the optimal three-view triangulation problem is not

a minimal problem (minimal number of views is 2), but it is nonetheless a classic

problem solved by the action matrix method. We briefly review the model here.

Given three camera matrices Pi = [Ri ti], and three corresponding image points

ui, the 3D point U = [u1, u2, u3]
> must be computed such that it minimizing the

objective function defined as the sum of squared reprojection errors:

F (U) =
3∑

i=1

d(PiU,ui)
2. (3.5.1)

The problem is simplified by setting all image points ui to be at the origin, and

adjusting the camera matrices to compensate. This is done by rotating them around

the camera’s center of projection to get P′
i = [Rui

Ri t], where Rui
∈ SO3 is the

rotation between ui and [0, 0, 1]> in the camera coordinate system. The objective is

now F (U) =
∑3

i=1 Fi(U), where reprojection errors Fi(U) are given in terms of the

2The code is at http://www.maths.lth.se/vision/downloads/data/optimal tvt.zip
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rows of the camera matrices P′
i = [P 1

i P 2
i P 3

i ]>:

Fi(U) =
(P 1

i U)2 + (P 2
i U)2

(P 3
i U)2

(3.5.2)

which is the squared length of the image vector after re-projection.

Optimality requires that dF
dui

= 0 for each component ui of U. After differentiating

with respect to ui. When i 6= j, the derivative is [63]

dFi

duj

= 2
P 1

i (j)P 1
i U + P 2

i (j)P 2
i U

u2
j

, (3.5.3)

where P k
i (j) is the jth element of P k

i . When i = j, we have

dFj

duj

= 2
(P 1

j (j)P 1
j U + P 2

j (j)P 2
j U)uj − (P 1

j U)2 + (P 2
j U)2

u3
j

(3.5.4)

When these derivatives are written out in terms of uj for j = 1 . . . 3 and brought

under the same denominator to form polynomial equations, we end up with 3 equa-

tions of degree 6.

3.5.2 Template Optimization

After the addition of a sufficient number of equations, the elimination template for

this problem has size 225 × 209. We reduced the size to 154 × 204. We begin by

rearranging the columns of the coefficient matrix such that C =

[
CE CR CB

]
.

We then remove rows, one-by-one and test the template for stability, as suggested
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in [35]. This allows us to remove rows

[1 . . . 43, 49, 122, 124, 125, 127, 128, 130,

133, 167, 169, 170, 171, 172, 199, 200, 202, 204,

206, 209, 210, 213, 214, 218, 222].

We now apply our method to remove five additional excess pairs from the resulting

matrix. We remove rows [21 , 79 , 80 , 81, 117], and columns [1, 2, 3, 55 , 56]. The

number of pairs removed is only 5, however, this problem has 50 basis monomials

and 31 required monomials, so the task of choosing Lemma 2 compliant columns is

difficult. It is still possible that a smaller template lurks inside this one, but finding

it might be a difficult combinatorial problem.

We use simulated data to show once again that this removal has little effect on

the results in double precision arithmetic. We plot the results in Figures 3.9 and

3.10. Single precision appears to be far out of reach for this problem.

3.6 Conclusions

In this chapter we developed a new method for reducing the size of the action matrix

template and proved some properties of the columns of the template matrix. We

showed that under some conditions, rows and columns of the matrix can be removed

a priori, resulting in improved speed.

We produced a real example of algorithms which benefits substantially from

our approach both in terms of speed and numerical stability, namely the three-point

panoramic stitching and the “3+1” algorithm. We believe that this generic approach

can be used on other algorithms as well, making the action matrix method an even
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Figure 3.9: Optimal three-view triangulation experiment with no noise. We compare

the orders of magnitude of error in triangulated 3D point log10(‖X− X̂‖2). We used
the standard basis (tvt solve std.m script), and not the QR method. Note that
due to the nature of the problem, the error is much higher than in the case of 3D
panorama stitching.

more attractive way to solve geometry problems in computer vision.

As a possible further improvement to this optimization, the method can be ap-

plied without relying on potentially numerically deficient examples, as we did in this

here. By applying Lemmas 1 and 2 at the template generation stage with random

coefficients drawn from Z/p, it may be possible to produce an exact solution.
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Figure 3.10: Optimal three-view triangulation experiment with noise. We compare

the orders of magnitude of error in triangulated 3D point log10(‖X − X̂‖2) between
the two templates. The standard deviation of the noise in the points in camera
coordinates was 0.01. The results are for the standard basis (tvt solve std.m script),
and not the QR method. The results are again very similar despite being computed
with a smaller template.
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Chapter 4

Structure from Motion Using

Directional Correspondence

4.1 Introduction

Data association has been identified as one of the two main challenges in visual

odometry next to observation noise (see special issue to the workshop [1]). Clut-

tered environments with independently moving objects yield many erroneous feature

correspondences which have to be detected as outliers. It has been shown [56] that

Random Sample Consensus (RANSAC) provides a stable framework for the treat-

ment of outliers in monocular visual odometry. For RANSAC it is highly desirable to

have a hypothesis generator that uses the minimal number of data points to generate

a finite set of solutions, since this minimizes the probability of choosing an outlier

as part of the data. For example, in minimal cases, absolute pose estimation re-

quires three correspondences between the world and image points, and relative pose

requires five image to image correspondences. In this chapter we propose a new min-

imal method for computing relative pose for monocular visual odometry that uses
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three image correspondences and a common direction in the two camera coordinate

frames, which we call a ”directional correspondence”. We call this the ”three-plus-

one” method. The main motivation for using the three-plus-one method is to enable

visual odometry using RANSAC with a four-point minimal solver (instead of the

traditional five), as long as the fourth point is at infinity (and thus provides a direc-

tional correspondence). However, with the advent of robots and mobile devices with

inertial measurement units (IMU), the three-plus-one algorithm becomes an attrac-

tive way to solve the visual odometry problem where the directional correspondence

is provided by an IMU (e.g. the gravity vector).

The main goal in this chapter is to introduce two efficient algorithms for the

three-plus-one problem. It has been known [71] and it is straightforward to deduce

that the knowledge of the directional correspondence reduces the number of rotation

unknowns to one, yielding a system of three quadratic equations in three unknowns.

In Section 4.3, we show how to formulate the full relative pose problem as a system

of four polynomial equations. We then present two methods for solving this system.

The first method is a direct, closed-form solution, leading to a quartic polynomial of

one variable, and is found in Section 4.4. Before introducing the second method, we

give a brief review of the algebraic geometry techniques in Section 4.5 and a more

complete treatment was found in Chapter 2. The method based on these techniques,

and specifically on the “action matrix” method from Byrod et al [14], is presented in

Section 4.6. In this case, eigenvalue decomposition of a 4× 4 matrix recovers three

of the four variables simultaneously.

Our second goal is to investigate the properties of both solutions, exploring per-

formance under noise and adverse imaging conditions. In Section 4.8, we demon-

strate that both methods solve the problem correctly and highlight the differences in
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numerical properties and computational requirements. Since we envision that this al-

gorithm may be implemented on mobile devices and low-power CPUs that frequently

lack the hardware to process double precision (64-bit) floating point numbers, we in-

vestigate the numerical properties of both solutions in single and double precision

arithmetic, and show that except for specific imaging conditions, both algorithms

are stable in both implementations.

Our third goal is to demonstrate that the three-plus-one method can be used

in place of the five-point method in visual odometry applications. To that end, we

compare the accuracy and the computational requirements of the five-point algorithm

with the closed-form algorithm for the three-plus-one problem using simulated data,

and show it to be superior in estimating camera rotation in noisy conditions without

sacrificing translation estimation accuracy.

The final goal is to demonstrate that the three-plus-one method is a reliable al-

ternative to the five-point method in a real-world visual odometry application, if

an ample supply of distant points is present (such as in outdoor environments). In

Section 4.9.1, we use our method in a RANSAC framework to compute monocular

visual odometry on outdoor video data. When used with RANSAC, our visual odom-

etry does not require any knowledge about which points are at infinity, because we

simply let RANSAC choose the inlier hypothesis from all available image correspon-

dences. We will show that since we only require four correspondences, our method

leads to more robust visual odometry than the five-point method. Moreover, in cases

where only few nearby point correspondences can be found, having it as another hy-

pothesis generator reduces the probability of failure of a five-point-based navigation

algorithm. In Section 4.9.2, in order to demonstrate the potential of our method

for vision-inertial fusion, we present the results of a real experiment, comparing the

three-plus-one and the five-point method when an IMU is available.
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We first presented this work in [50].

4.2 Related Work

Our work places itself at the intersection of minimal solvers for geometric vision

problems with approaches using motion constraints.

There have been two previous papers dedicated to solving the three-plus-one

problem. However, both fall short of providing an efficient, closed-form solution.

The solution in Kalantari et al. [31] uses a Gröbner basis method, but due to

suboptimal formulation, ends up with 12 solutions. A related problem was solved in

the work of Lobo and Dias [40] who use a general formulation of a given reference

direction (vertical in their case) to solve several geometric vision problems by using

vanishing points and/or inertial measurements.

Structure from motion has benefited from attitude measurements. When all 3

DOF of rotation are known, either from vanishing points [33, 5] or inertial measure-

ments, the problem can be reduced to a tractable estimation of the focus of expansion.

Vieville [71] demonstrated the first approach where only the gravity vector is used

to simplify structure from motion. The relation between the use of gravity vector

and the lack of knowledge in correspondences has been studied in [21, 42]. When

multiple frames are used, inertial measurements have been naturally integrated along

visual features as measurements in nonlinear Kalman filtering [58, 47, 66, 30, 25].

Partial information like altitude has been used [59] to eliminate the unknown scale

of monocular vision. Diel et al. [20] presented how a new epipolar constraint based

on inertial information can be added in the visual odometry estimation process. In

augmented reality, Azuma [4] and You et al. [72] proposed hybrid inertial-vision

trackers where vision-based algorithms refine orientation estimates provided by an
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inertial sensor. Burschka and Hager developed a vision approach to SLAM [10],

which circumvents the problems caused from drift in the inertial measurements by

using a vision algorithm to estimate directly the relative pose of the camera between

frames.

4.3 Problem Formulation and Notation

We now introduce notation for the basic geometric objects we will use to formulate

the problem. Image points are represented by homogeneous 3-vectors q = (x, y, 1)>.

Scene (world) points are represented by homogeneous 4-vectors Q = (X, Y, Z, 1)>.

Given image point correspondences q and q′ in two calibrated views, it is known that

the “essential matrix” constraint relating them is q′>Eq = 0, where E ≡ t̂S where

the rotation matrix S ∈ SO(3) and t̂ is a 3×3 skew-symmetric matrix corresponding

to the translation vector t, which is known only up to scale. The essential matrix

thus has five parameters.

We will now define and formulate the three-plus-one problem. We are given three

image correspondences qi ↔ q′i, i = 1, .., 3 from calibrated cameras, and a single

directional correspondence in the form of two unit vectors d ↔ d′ (see Figure 4.1a).

Our goal is to find the essential matrix E which relates the two cameras, and thus

find the rigid transformation between them up to a scale factor. We will first show

that this problem is equivalent to finding the translation vector t and a rotation

angle θ around an arbitrary rotation axis.

Let us choose the arbitrary rotation axis to be e2 = [0, 1, 0]>. We can now

compute the rotation matrices R and R′ that coincide d and d′ with e2, and apply

them to the respective image points, yielding pi = Rqi and pi
′ = R′qi

′ for each

i = 1, .., 3. This operation aligns the directional correspondence in the two views

86



(a)$ (b)$

Z$

C0
C1

[R t]

d�
d

Z$

C0
C1

d�
d

p1,2,3

p�
1,2,3

Ẽ
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Figure 4.1: (a) Illustration of the geometry of the three-plus-one problem. The
three image correspondences qi ↔ q′i and a directional correspondence d ↔ d′

between coordinate frames C0 and C1 are given. (b) Illustration of the geometry
after applying the rotation matrices R and R′ which align the vectors d and d′ with
the y-axis respectively.

with e2. Once the axis is chosen, we only need to estimate the rotation angle around

it and the translation vector in order to reconstruct the essential matrix.

After taking the directional constraint into account, from the initial five param-

eters in the essential matrix, we now only have to estimate three (see Figure 4.1b).

This three-parameter essential matrix Ẽ relates the points p and p′ as follows:

p′i
T
Ẽpi = 0, (4.3.1)

Since the rotation is known to be around e2, we can use the axis-angle parameteri-

zation of a rotation matrix to parametrize Ẽ as follows:

Ẽ = ˆ̃t(I + sin θê2 + (1− cos θ)ê2
2),

where t̃ = R′t.

Each image point correspondence gives us one such equation of the form (4.3.1),
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for a total of three equations in four unknowns (elements of t̃ and θ). To create

a polynomial system, we set s = sin θ and c = cos θ, and add the trigonometric

constraint s2 + c2 − 1 = 0, for a total of five equations in four unknowns. In order

to reduce the number of unknowns and take care of the scale ambiguity in Ẽ, we

choose the direction of the epipole by assuming that the translation vector t̃ has the

form [x, y, 1]>. This means that for each t̃ that we recover, −t̃ will also need to be

considered as a possible solution.

Once we substitute for Ẽ in equation (4.3.1), the resulting system of polynomial

equations has the following form:

ai1xs + ai2xc + ai3ys + ai4yc + ai5x− ai2s + ai1c + ai6 = 0 (4.3.2)

for i = 1, .., 3, and the equation

s2 + c2 − 1 = 0. (4.3.3)

We will refer to these equations as F = {fi(x, y, s, c), i = 1, ..., 4} in the rest of the

chapter. The coefficients aij are expressed in terms of image correspondences as

follows:

ai1 = p′iypix

ai2 = −p′iy

ai3 = −p′ixpix − 1

ai4 = p′ix − pix

ai5 = piy

ai6 = −p′ixpiy,

(4.3.4)
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where pix and piy (p′ix and p′iy ) are the first and second components of the rotated

image points pi (p′i). In the next section we will analyze and solve this system in

closed form and show that it has up to four solutions. The total number of possible

pose matrices arising from our formulation is therefore at most 8, when we take into

account the fact that we have to consider the sign ambiguity in t̃. When the motion

of the camera in the z direction (after the rotation by R and R′) is extremely small,

the parametrization t̃ = [x, y, 1]> is numerically unstable. We deal with this rare

instability by formulating and solving a system for the parametrizations t̃ = [x, 1, z]>

and t̃ = [1, y, z]>, which can be easily done using the methods we describe below,

but omitted for the purposes of this presentation.

4.4 Closed-form Solution

We first review the closed-form solution proposed by Xun and Roumeliotis in their

technical report []. This solution will be used to reason about the degenerate configu-

rations later in this chapter. They first show that the system has four solutions, and

that it can be solved analytically by elimination and back-substitution. Specifically,

we first present an elimination procedure to obtain a 4th-order univariate polynomial

in c, which can be solved in closed-form. Subsequently, we determine the remaining

three variables through by back-substitution, where each solution of c returns exactly

one solution for the other three variables. Therefore, we have a total of 4 solutions

for the relative rotation matrix and translation vector.

The main steps of the elimination procedure are listed as follows.

1. Solve for x and y as a function of c and s using the first two equations in

(4.3.2). The variables x and y can be expressed as quadratic functions of c and

s.

89



2. Substitute x and y in the third equation in (4.3.2). This yields again a cubic

polynomial in c and s, which is reduced into a quadratic by exploiting the

relationship between its coefficients and the trigonometric constraint.

3. Finally, using the Sylvester resultant (see Chapter 3, §5 in [17] ), we can elim-

inate one of the remaining two unknowns, say s, and obtain a 4th-order poly-

nomial in c.

Now, we describe the details of our approach. Rewrite the first two equations in

(4.3.2) as linear functions of c and s as follows:

a11s + a12c + a15 a13s + a14c

a21s + a22c + a25 a23s + a24c


x

y

 =

a12s− a11c− a16

a22s− a21c− a26

 , (4.4.1)

and solve the above linear system for x and y:

x

y

 =
1

d

 a23s + a24c −(a13s + a14c)

−(a21s + a22c + a25) a11s + a12c + a15


a12s− a11c− a16

a22s− a21c− a26

 , (4.4.2)

where the determinant

d = (a11s + a12c + a15)(a23s + a24c)− (a21s + a22c + a25)(a13s + a14c). (4.4.3)

Substituting the expression for x and y into the third equation in (4.3.2) and multi-

plying both sides of the equation by d, yields a cubic equation in s and c:

g1s
3 + g2cs

2 + g1sc
2 + g2c

3 + g3s
2 + g4sc + g5c

2 + g6s + g7c = 0.

The coefficients gi for i = 1, ..., 6 are derived symbolically and are found in Section

90



4.11, equation (4.11.1). By using the fact that s2+c2 = 1, and exploiting the relation

between the coefficients of the first four terms, we can reduce this equation to the

following quadratic

g1s + g2c + g3s
2 + g4sc + g5c

2 + g6s + g7c = 0. (4.4.4)

In the final step, we employ the Sylvester resultant to eliminate one of the two

remaining variables from equations (4.3.3) and (4.4.4). The resultant of the two

polynomials is the determinant of the Sylvester matrix



g3 g4c + g1 + g6 g5c
2 + g2c + g7c 0

0 g3 g4c + g1 + g6 g5c
2 + g2c + g7c

1 0 c2 − 1 0

0 1 0 c2 − 1


, (4.4.5)

which leads to a 4th-order polynomial equation

4∑
i=0

hic
i = 0, (4.4.6)

with coefficients hi given in Section 4.11, equation (4.11.2). This shows that in

general, the system has four solutions for c. Back-substituting the solutions of c

into equation (4.4.4), we compute the corresponding solutions for s. Note that each

solution for c corresponds to one solution for s because we can reduce the order of

equation (4.4.4) to linear in s, once c is known, by replacing the quadratic terms s2

with 1− c2. After s and c are determined, we compute the corresponding solutions

for x and y using (4.4.2) for a total of four solutions. We will describe how to recover

the pose matrix from x, y, s and c in Section 4.6.4.
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In the next section, we will solve the polynomial system in (4.3.2) and (4.3.3)

using algebraic geometry techniques.

4.5 Algebraic Geometry Background

In this section, we review the algebraic geometry concepts that have been applied to

solving geometry problems in computer vision. The definitive introduction to these

concepts can be found in textbooks on algebraic geometry [18, 17].

One of the textbook ways [18] of solving algebraic systems is via the so-called

action matrix. We will give a brief overview of this method. Consider a system of

polynomial equations in m variables f1(x) = ... = fn(x) = 0, where x = (x1, ..., xm),

and coefficients from a field K. A geometric description of the solution set to a

polynomial system is given by an affine variety V . In the case where there are

finitely many solutions, the variety V is zero-dimensional which includes a finite

number of points in Km when K is an algebraically closed field. The ring of all

polynomials in x is denoted by K[x].

The polynomials fi are the generators of the polynomial ideal I = {
∑m

i=1 hifi :

h1, ...hm ∈ K[x]}. In other words, an ideal generated by fi is a set that includes the

generators, and is also closed under addition and multiplication by other polynomials

in K[x]. It is easy to show that the polynomials in the ideal vanish on the same

variety as the generating set. The problem of solving the system now becomes a

problem of finding a subset of equations in the ideal with properties that make them

easy to solve.

The methods used to solve polynomial systems in computer vision rely heavily on

the properties of a set of equivalence classes for polynomial division (the remainders)

of members of K[x] by members of the ideal I. This set of equivalence classes is called

92



the quotient ring, and is denoted as K[x]/I. If the variety is zero-dimensional (i.e.,

the system has finitely many solutions), the quotient ring is a vector space whose

dimension equals the number of solutions. On this vector space, we can define linear

maps, which are often represented in matrix forms and called action matrices.

The action matrix is the key for solving systems of polynomial equations. A

univariate polynomial can be solved using eigenvalue decomposition of a companion

matrix. The action matrix is a multivariate equivalent of the companion matrix.

The idea is to find a linear operator Tp for some p ∈ K[x] that represents the

multiplication by p in the vector space defined by K[x]/I, i.e., Tp : f(x) → p(x)f(x).

If we select a basis for this vector space, we can represent Tp as a matrix mp with

entries in K. It was shown in [18] that λ is an eigenvalue of this matrix if and only

if λ is a value of the function p evaluated on the variety V of the ideal. This means

that if we set p = xk, we can find the value of xk which satisfies the initial system

of equations. We can also determine the solutions through eigenvectors. It is known

that the eigenvectors of the action matrix represent the scaled solutions to the same

problem. We can also determine the scale, because the monomial 1 is always in the

basis for zero-dimensional varieties.

Finding the dimensionality and basis for this vector space is the first step in re-

covering solutions. The dimensionality immediately tells us the number of solutions,

while the basis is important in the action matrix computation. One way of obtaining

these two quantities is through division of polynomials in K[x] by the Gröbner basis,

which is a special basis for the ideal, division by which cancels out all the possible

leading terms of the polynomials in the ideal. A good introduction to Gröbner base

is found in [17].

Computing a Gröbner basis using finite precision arithmetic is known to be a

numerically unstable process. However, algorithms developed by Traverso in[69]
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allow us to analyze the ideal generated by our system using coefficients from a prime

field K = Z/r (integers modulo r), where r >> 7 is a prime number [35]. Since this

field is finite, the computation with polynomials with coefficients in Z/r (including

Gröbner basis) is exact. The algorithms ensure that if a stable Gröbner basis is

found in this field under repeated trials with random coefficients, the monomials will

remain the same when we change the field to Q with some probability. In our case,

we only need the Gröbner basis for one system, F , and it is easy to check when we

have it. Once a Gröbner basis G is found, a linear basis for the quotient space can

be formed by the monomials in the remainder after division by G.

In order to use efficient linear algebra techniques to manipulate the system (4.3.2)-

(4.3.3), we rewrite it as follows:

CX = 0,

where C is a matrix whose columns contain coefficients of the monomials, and X is

the vector of monomials corresponding to the columns of C. It should be noted that

the ideal is closed under row operations on C.

In solving our problem, we will follow the method outlined in [14], which allows

us to build the action matrix without constructing a Gröbner basis (we will still

analyze the system and extract its Gröbner basis in the finite field for the purposes

listed above). We briefly describe their method here. The key idea is to determine

the so-called solving basis B (in our case, we use the monomial basis for the quotient

ring), and the required monomials R = xkB\B. Specifically, our objective is to find

the minimum number of monomials needed to construct the action matrix, and then

re-arrange the matrix such that those monomials, along with the basis monomials,

occupy the last columns of the matrix. Using algebraic geometry software we can find

a candidate linear basis B for the quotient space. For the action matrix corresponding
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to multiplication by xk, the set of monomials that need to be expressed in terms of

B is the set R = xkB\B. The rest of the monomials in the system are called E . The

polynomial system with coefficients C can then be expressed as follows:

CX =

[
CE CR CB

]
XE

XR

XB

 = 0.

The only requirement on this coefficient matrix, after this matrix is put into the

row-echelon form, is that its |R| × |R| submatrix corresponding to the monomials

in R and the last |R| equations has full rank. This submatrix is called CR2 in [14].

When we discuss our solution, we will illustrate how to use this matrix to extract

the action matrix. The complete details are found in [14].

The initial set of equations F (see (4.3.2)-(4.3.3)) is unlikely to have a coefficient

matrix C that meets the above requirement. This is where we will draw on the ideal

members to expand the original system with additional equations, until the require-

ment on the action matrix construction is satisfied. The technique to generate ideal

members efficiently proposed in [35] involves multiplying the original polynomials

by monomials starting with the lowest orders. This operation, when applied to an

equation (a row of C), will result in the coefficients from that row to be shifted to

the left in the matrix to take their places in columns corresponding to their new

monomials. We will continue adding polynomials (checking for linear dependence

and unneeded ones), until C is large enough to produce a full rank CR2. We call the

resulting set of polynomials (which are monomial multiples of the original system)

an elimination template, and and matrix C an elimination matrix. This part of the

process can be done with coefficients drawn randomly from Z/r.
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4.6 Action Matrix Solution

In this section, we will follow our implementation of the action-matrix method due to

[14, 35]. The elimination template should be computed using a symbolic mathematics

software, such as Maple or Macaulay2. We found Maple to be a more convenient

choice.

We have already showed that the system has four solutions, but this can also

be verified using Maple’s Groebner package. Let J be the ideal generated by F ,

where coefficients aij were chosen at random from Z/30029. We then computed the

GrevLex-order Gröbner basis for J . Since this ideal is zero-dimensional, and the

vector space spanned by the polynomials of the quotient ring was four-dimensional,

there are in general four solutions to the system in the field of real numbers.

In the next two subsections, we describe the details that are specific to the three-

plus-one problem, and thus the set of polynomials formed by (4.3.2) and (4.3.3). The

choices of variable order and action monomial (c in our case) that we made below are

not arbitrary. Other choices can produce much larger elimination templates or may

be less favorable numerically. The entire process of elimination template generation

was repeated for several variable orderings and action monomials to ensure stability

and small size of the template. This process paralleled the automated method pro-

posed in [35]. (We did not use that method directly due to its use of full Gröbner

basis and a requirement for reduced row-echelon form, instead of row-echelon form,

for the coefficient matrix which causes numerical instability.)

4.6.1 Finding the Bases

We used the Gröbner basis of J in a finite field (such as the one computed to verify

the number of solutions) to determine the solving basis monomials. We chose to
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order the variables (x, y, c, s). After computing the GrevLex Gröbner basis with that

order, we chose the solving basis B to be [y, c, s, 1], the same as the quotient ring

basis monomials. The set of required monomials R, which is the set of monomials

that need to be expressed in terms of B for the action matrix mc, is thus [yc, c2, cs].

4.6.2 Constructing the Elimination Template

Once we know the solving basis and the required monomials, we must extend the

initial set of four polynomials with other polynomials from the ideal J such that the

rank condition on CR2, after elimination, is satisfied. We multiplied the four original

polynomials by the monomials in (x, y, c, s) of degrees 1 and 2 and added them to

the system, put the resulting coefficient matrix in row-echelon form and check the

rank of CR2. We then eliminated the redundant polynomials from the template.

The result of this process is elimination template, which consists of a set of 21

monomial multipliers and corresponding polynomials from the initial system:

{f1, f2, f3, f4, f1s, f2s, f3s, f4s, f1c, f2c, f3c, f4y, f4x,

f1s
2, f2s

2, f3s
2, f1cs, f2cs, f3cs, f4ys, f4xs} (4.6.1)

as well as, a vector of 25 monomials:

[ yc2s ys2c xs3 ys3 xc2 yc2 xcs ycs c2s xs2 ys2 s2c s3

xc xs ys s2 x yc c2 cs y c s 1 ]. (4.6.2)

The coefficients from the equations in (4.6.1) will form the entries in the 21×25 elim-

ination matrix with columns corresponding to the monomials in the vector (4.6.2).
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The exact arrangement of coefficients is given in Appendix 4.12.

4.6.3 Reduction and Action Matrix Extraction

With the coefficient matrix at hand, we leave Maple and Z/r. The template will

remain the same across all instances of the problem. We construct the 21×25 matrix

from the coefficients aij (see (4.3.4)) for the particular instance of the problem,

and perform Gaussian elimination with partial pivoting or LU decomposition. The

elimination can be stopped 3 rows early for added efficiency. We then extract the

3 × 3 matrix CR2 representing the monomials in R (columns 19, 20 and 21) in the

last three rows of the upper triangular matrix. We invert this matrix and multiply

it with the matrix CB representing the monomials in B (columns 22 through 25) in

the last three rows. The rows of the resulting 3× 4 matrix C−1
R2CB become the first

three columns of the 4 × 4 action matrix mc. The last column has a 1 in the third

position, indicating that c (a required monomial 1·c) is already expressed in the basis

as a vector [0, 1, 0, 0]>. The solutions are extracted as the real eigenvectors of this

action matrix which can be computed in closed form. Since the value of a constant

polynomial evaluated at any point is also constant, we set the scale of our solutions

by dividing each element of the eigenvector by the last element, which corresponds

to the monomial 1.

We have recovered up to four sets of values for y, c and s, and must now find the

corresponding values for x by solving one of the equations from (4.3.2) for each set

of values. These equations are linear in x.
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4.6.4 Back Substitution and Pose Recovery

We will now describe how to find the pose matrices from solutions to the system.

We recover the rotation as

Re2 = exp(atan2(s, c)ê2),

and translation as

t̃ = ±[x, y, 1]>.

Finally, we reconstruct each pose as follows:

P =

[
S | t

]
=

[
R′>Re2R | R′>t̃

]
.

There are up to 8 such pose matrices for each instance of the problem. Point trian-

gulation and chirality checks are used to eliminate false solutions. Since this solution

method is designed to be used in robust estimation frameworks (such as RANSAC),

any remaining false hypotheses can be eliminated by triangulating an additional

point and choosing the P with the minimum reprojection error.

4.7 Degenerate Configurations

It was pointed out in [24] that the three-plus-one algorithm is not degenerate for

collinear world points, except for the line parallel to the translation direction. It

turns out that this degeneracy is only a special case of two additional degenerate

configurations.

The first one occurs when all world points lie on the horopter [3], i.e. their
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projections are the same in the first and second images up to a projective trans-

formation, which is an ambiguous configuration for two views ([27], Result 22.21).

Algebraically, this configuration causes the coefficients ai4 from (4.3.4) to vanish,

removing the terms of the form ai4yc from the equations. The resulting polynomial

system no longer generates a zero-dimensional ideal, and thus has an infinite number

of solutions.

The second degenerate configuration occurs when the determinant d in (4.4.2)

is zero. When this occurs, the translation t̃ cannot be estimated from the point

correspondences using the equation (4.4.2). We can derive the geometric condition

that causes the determinant to vanish as follows. After projecting two generic 3D

points xi = [Xi, Yi, Zi]
> for i = 1, 2 into the camera frames, we get pi = xi and

p′i = Re2xi + t̃. We compute the corresponding coefficients (4.3.4), and substitute

them into equation (4.4.3). After using the fact that s2 + c2 = 1, the determinant

condition becomes

(Z2Y1 − Z1Y2)(cx− s) + (Z1X2 −X1Z2)y + (X1Y2 −X2Y1)(sx + c) = 0, (4.7.1)

which we can rewrite as (−R>
e2

t̃)>x̂1x2 = 0. This condition means that the second

camera’s center of projection, expressed in the first camera’s coordinate system, is

orthogonal to the vector formed by the cross product of the world points. In other

words, the degeneracy occurs when the world points are coplanar with the translation

vector. This is a more general case than the three points parallel to the translation

direction discussed in [24]. A geometric argument can be made via Chasles’ Theorem

([27], Thrm. 22.3) since five points on a plane (three world points and two camera

centers) generally define a conic. The theorem proves that in this case there exist

alternative reconstructions. This configuration is shown in Figure 4.2. We note that
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Figure 4.2: A degenerate configuration occurs when all world points are on the same
plane as the cameras’ centers of projection C0 and C1.

while the closed form solution is degenerate when the two correspondences i = 1, 2

in equation (4.3.4) are coplanar with the baseline, the action matrix method only

fails when all three points are coplanar with t.

In practice these degeneracies do not cause a large number of errors, as seen in

the experiments.

4.8 Simulation Results

In this section we establish the expected performance level of our algorithms in

noise-free and noisy conditions, comparing them first to each other and then to the

five-point relative pose estimation algorithm. This is accomplished with simulated

data. We study both single and double precision arithmetic implementations for

the action-matrix and closed-form algorithms, and look for numerical differences

between them. In the comparison with the five-point method, we expect that the

more constrained three-plus-one method will give better accuracy in noisy conditions.
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Figure 4.3: Distribution of numerical errors in recovered poses for 104 random con-
figurations with single and double precision implementations. The error measured
is the Frobenius norm of the difference between the true and estimated pose matri-
ces. The median errors for double precision are 3.9 · 10−14 for the action matrix and
3.1 · 10−13 for the closed form method. For single precision the errors are 9.3 · 10−6

and 3.5 · 10−5, respectively.

In each figure where single and double precision versions of the three-plus-one

algorithm are compared, the legend is as follows: C and A refer to the “closed form”

and “action matrix” methods, respectively, and 32f and 64f refer to the floating point

precision, single and double, respectively.

The input data was generated as follows. The pose of the first camera was

defined to be the identity pose [I|0], and the reference direction was generated as

a random unit vector. The pose of the second camera was generated uniformly at

random as a unit translation vector t and three Euler angles corresponding to roll,

pitch and yaw of the second camera within the limits specified by the experiment.

The Euler angles were converted to a rotation matrix R, which together with t

formed the camera pose [R|t]. Sets of five three dimensional world points were

generated within a spatial volume defined by the parameters of the experiment, so
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as to be visible by both cameras. The world points were then projected into the

image planes of the two cameras (with identical intrinsic calibration defined by the

experiment) to form image correspondences, and contaminated with Gaussian noise

with standard deviation in pixels defined by the experiment. The second camera’s

reference direction was then computed, and the directional correspondence vectors

were contaminated by Gaussian rotational noise with standard deviation in degrees

defined by the experiment. The sets of image and directional correspondences were

then used to compute pose with the three-plus-one and the five-point algorithms.

Each method produces a set of pose hypotheses for each input set. The error reported

for each input set is the minimum error for all hypotheses. All comparisons between

algorithms were run on identical input data.

4.8.1 Perfect Data

First, we establish the correctness and numerical stability of our algorithms. In these

experiments, the pose was allowed to vary over the entire range of rotations, and

the translation and directional correspondence vectors were generated uniformly at

random and normalized to length 1. Figure 4.3 shows errors in pose recovery on

perfect, simulated data. The noise metric is the minimum Frobenius norm of the

differences between the true pose matrix and each computed pose matrix (up to

eight per instance). The error distribution shows that both algorithms perform as

expected, with the action matrix method exhibiting better numerical stability. We

will discuss this difference in the next section.
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Figure 4.4: Median translation and rotation errors for the sideways and forward
motion of the baseline camera against noise standard deviation. As with other motion
estimation methods, the sideways motion gives significantly worse performance than
forward motion on the same data.

4.8.2 Image Noise

In subsequent simulated results we examine the performance for ”standard” imaging

conditions, which we define as a 640x480 camera with a 60◦ FOV, where structure

points are found between 10 and 40 baselines away, where one baseline is the dis-

tance between camera centers. We will first consider only pixel noise, and deal with

directional correspondence noise later. Figure 4.4 compares performance for forward

and sideways motion of the camera under different pixel noise conditions. It comes

as no surprise that forward motion is generally better numerically, and that the ro-

tation estimate (1DOF) is significantly better than the estimate of the epipole. The

plots also conclusively demonstrate numerical stability of both single and double

precision implementations under ”standard” imaging conditions. These experiments

show that once realistic noise is added, the numerical precision of either algorithm

is sufficient for implementation on single precision processors.

The seemingly large errors in epipole estimation are due to the fact that the

scene points are located far from the cameras, but we believe it to be a realistic (if

difficult) configuration.
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Figure 4.5: Median translation and rotation errors for varying levels of noise in
directional correspondences for the ”standard” camera. The noise standard deviation
varies from 0◦ to 2◦.
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Figure 4.6: Median translation and rotation errors for varying levels of noise in both
directional and image correspondences for the ”standard” camera. The noise stan-
dard deviation varies from 0◦ to 2◦, and from 0 to 2 pixels for image correspondences.

4.8.3 Directional Correspondence Noise

In this section, we investigate the performance impact of errors in directional corre-

spondences. The directional noise was simulated as a rotation of the direction vector

around a random axis with an angle magnitude drawn from a normal distribution.

The standard deviation of the noise is plotted on the x-axis. The effect of directional

noise only for a range of errors between 1 and 2 degrees can be seen in Figure 4.5.

Performance under both pixel and directional noise is presented in Figure 4.6.
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Figure 4.7: Distribution of errors in epipole orientations in degrees for 104 trials
under forward motion with pixel error standard deviation of 0.3 and field of view
of 10◦. The median errors for double precision are 1.1◦ for both methods. For
single precision the errors are 8.5◦ for the closed form and 1.9◦ for the action matrix
method.

4.8.4 Numerical Stability

With noise-free data, the closed-form, single precision algorithm has noticeably worse

performance than the action matrix algorithm (see Figure 4.3), however, there is no

noticeable difference when the noise is added for ”standard” camera, as we saw in

the previous sections. Figure 4.7 demonstrates that under more difficult imaging

conditions of 10◦ field of view with 0.3 pixel noise, the median errors in the epipole

direction are the same in double precision, but in single precision the error is 4.5 times

greater for the closed-form solution. This demonstrates that under some conditions,

it is advantageous to use the action-matrix solution because of its superior numeric

properties.

106



4.8.5 Comparison with the Five-point Method

We also compare the three-plus-one method to the classic five-point method. While

they are not equivalent (since the five-point method does not require a specific point

to be at infinity), they can be used interchangeably in some real situations, as de-

scribed in the next section.

Since both closed-form and action-matrix-based algorithms exhibit similar per-

formance, we only compare the double precision implementations of our closed-form

algorithm and the five-point algorithm. Figure 4.8 demonstrates the effect of the

field of view on the algorithms. The rotation estimation is generally better with the

three-plus-one algorithm, while translation error does not decrease as quickly with

the field of view in the three-plus-one case as in the five-point case. In Figure 4.9

we plot errors for several levels of directional noise, while varying the pixels noise.

It is clear from the graphs that the three plus one algorithm is better at estimating

rotations than the five point algorithm, even under significant error in the direc-

tional correspondence, but the five-point method is better at estimating sideways

translation, even in the cases of small error in the directional correspondence.

In real experiments, we will use our method to compute vision-only relative pose,

when points at infinity are present. But first, we compare the performance of the

five-point and the three-plus-one methods in this scenario in simulation. The direc-

tional correspondence in this case is generated as a projection of a point at infinity,

contaminated with noise and made unit-length. The directional correspondence noise

can now be measured in pixels, putting the two methods on equal footing.

The test data were generated differently for this experiment. The first three

correspondences were projected into the image from a range of 10 to 40 baselines,

as before. An additional point at infinity was randomly generated within the field

107



0 20 40 60 80 100
0

5

10

15

20

25

30

Field of view (deg)

Ep
ip

ol
e 

er
ro

r (
de

g)

 

 

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Field of view (deg)

R
ot

at
io

n 
er

ro
r (

de
g)

 

 
3p1, 0.1
5p,   0.1
3p1, 0.5
5p,   0.5
3p1, 1.0
5p,   1.0

3p1, 0.1
5p,   0.1
3p1, 0.5
5p,   0.5
3p1, 1.0
5p,   1.0

Figure 4.8: Median translation and rotation errors for varying fields of view of the
baseline camera and random poses. In the legend, the three-plus-one algorithm is
labeled ”3p1”, and the five-point algorithm is ”5p”. The number after the algorithm
name indicates the standard deviation of pixel and directional (for three-plus-one
method only) error standard deviations levels in pixels and degrees. The colors also
correspond to noise levels: red is 0.1 pixel and 0.1◦, red is 0.5 pixel and 0.5◦, and
green is 1.0 pixel and 1.0◦.

of view of the camera and projected into the images. This correspondence was

unitized and contaminated with pixel noise of the same standard deviation as the first

three image points, giving us a directional constraint from a point at infinity. This

experiment assumes that a real camera would have a sufficiently wide depth of field

to keep nearby and distant features in focus simultaneously, which is expected when

its field of view is wide, or its aperture is sufficiently small. From the results shown in

Figure 4.10 we conclude that our method outperforms the five-point method, while

using only four image points, in estimating rotation in forward and sideways motion,

and translation in forward motion. Our method does a slightly worse job estimating

translation in the sideways motion.
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Figure 4.9: Comparison of the median errors of the three-plus-one algorithm with
the five-point algorithm for the cases of forward and sideways motion for different
directional noise levels. In the legend, the three-plus-one algorithm is labeled ”3p1”,
and the five-point algorithm is labeled ”5p”. The number after algorithm name indi-
cates the standard deviation of the directional noise in degrees. The green sequence
with ’x’ marker corresponds are the median errors in the five-point algorithm.

4.8.6 Computational Considerations

When using RANSAC, we can estimate the probability of success in getting an

outlier-free hypothesis based on the number of elements in the minimal data set.

When we estimate the epipolar geometry using image correspondences only, there

are two sets of inliers: the set that can be used as directional correspondences and

a set that can be used as a point correspondences. Both inlier ratios have to be

taken into account when computing the RANSAC stopping criterion. If the number

of distant points is sufficiently large (such as in outdoor scenes), we can realize a

significant performance gain with our method since fewer hypotheses will need to be

considered [23] due to smaller model size.

Since the hypothesis generator will run hundreds of times per frame in RANSAC-

based visual odometry schemes, it is important to compare the computational re-

quirements for the five point algorithm with the proposed methods. Computing
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Figure 4.10: Comparison of the three-plus-one algorithm with the five-point algo-
rithm where directional constraints are derived from image points at infinity. The
plots show median errors in pose estimation. The green sequences with the ’x’ marker
show performance of the five-point algorithm and the blue sequences with the ’*’
marker correspond to the three-plus-one algorithm. The directional correspondences
are derived from points at infinity and contaminated with the same pixel noise as
the other image points. This graph shows the superior performance of the three-
plus-one method in rotation estimation for forward and sideways motion, as well as
translation estimation in forward motion.

the coefficients aij requires 9 multiplications. The closed-form solution requires 125

multiplications before arriving at the quartic polynomial. The real roots of the 4th

degree polynomial can be extracted in closed form by computing and solving the de-

pressed quartic and two quadratics for a total of about 40 operations and six square

roots. The computation of the remaining variables takes additional 144 operations.

The main computational step of the action matrix algorithm is Gaussian elimination

(LU decomposition) of a 21 × 25 matrix. While theoretically taking O(2n3/3), or

about 9000 operations, the elimination of our sparse matrix only requires about 500

multiplications. The eigenvalue decomposition of a 4 × 4 matrix is done by solving

a quartic equation and eigenvectors are extracted with an inverse power iteration,

which costs 88 multiplications.

On the other hand, the main computational steps in the classic five-point algo-

rithm [54] are: extraction of the null space of a dense 5 × 9 matrix, requiring 280
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operations, Gauss-Jordan elimination of a dense 10 × 20 matrix, requiring about

1300 operations, and real root isolation of a 10th degree polynomial, which can be

accomplished as eigenvalue decomposition of a 10× 10 sparse companion matrix or

as an iterative root isolation process. From these observations we can conclude that

both the closed-form and the action-matrix forms of the three-plus-one algorithm

are significantly more efficient than the five-point algorithm. In real experiments,

the performance of the C implementation of the closed-form algorithm outperformed

an optimized implementation of the five-point method, on average, by a factor of 5

(2.6µs compared to 13.0µs on a 3GHz laptop).

4.9 Experimental Results

In the introduction we specified as one of the main goals of this work the demon-

stration of monocular, RANSAC-based visual odometry with a four-correspondence

hypothesis generator. We used our C++, double-precision implementation of the

action-matrix-based method to test the algorithm in this context. We used a hand-

held, 640× 480 pixel, black and white camera with a 50◦ field of view lens to record

an 825-frame, outdoor video sequence. The sequences included motion exercising all

degrees of freedom, and was a realistic representation of a robot localization task

(see sample images in Figure 4.11).

Harris corners and correlation matching was used to obtain image correspon-

dences. The matches were used to estimate camera motion following the monocular

scheme similar to the one described in [56]. The experiments consisted of using the

correspondences to estimate camera motion with the standard five point algorithm

and the new three point plus direction algorithm. We computed 200 hypotheses

for each image pair. The correspondences themselves, the number of hypotheses
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and the other system parameters remained the same, and only the pose hypothesis

generator was changed between experiments. In the structure from motion experi-

ment without an IMU, the directional correspondence was simply a unitized image

point correspondence. Since most outdoor scenes have no shortage of faraway feature

matches, RANSAC had no trouble choosing the right hypothesis with our method.

We will briefly describe the steps of the monocular visual odometry scheme:

1. Track features between consecutive frames. Estimate relative poses between

two frames using preemptive RANSAC [53] with hypotheses generated either

by the five point algorithm or the three-plus-one algorithm.

2. Use iterative refinement to polish the estimated pose with respect to all the

inlier points.

3. Triangulate the feature matches in the two frames into 3D points. If this is not

the first pair of frames, estimate the common scale between the current and

last pose estimate using a 1-point preemptive RANSAC procedure.

4. Set the scale for the current pose estimate and attach it to the last estimate.

5. Repeat from step 1.

This procedure produces a robust, monocular visual navigation solution. If the

features cannot be tracked for some reason or the preemptive RANSAC fails to

produce a correct hypothesis, the scale estimate will fail, and the pose will jump.

4.9.1 Structure from Motion Results

In Figure 4.13 we stitched together the poses and highlighted the places where breaks

in the path occurred. Since we know that we have enough points to track, the failures
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Figure 4.11: Sample images from our outdoor data set used to produce results in
Figure 4.13. The bottom image illustrates the difficult lighting conditions.

are due to RANSAC-based pose estimation or RANSAC-based scale estimation, and

is a result of a failure to choose an inlier subset. It is interesting to note that the

failures happened in different places with different algorithms due to randomness

of sampling. We expect more robust results (fewer breaks) from the three-plus-one

method, and we found it to be the case due to the limited number of hypothesis.

In order to further quantify the real-world performance, we also computed rel-

ative pose for each consecutive pair of frames in the data set with each algorithm.

Figure 4.12 shows the histogram of relative errors between the three-plus-one and

five-point algorithm. For each algorithm, the pose was computed as follows: corner

features were matched between two consecutive frames, and RANSAC-based relative

pose estimation, followed by iterative refinement was performed on all matches. The
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Figure 4.12: Differences in recovered relative pose between our algorithm and five-
point for the experiment in Figure 4.13. The differences are small, except the few
frames where one of the methods failed to find the right hypothesis. Those places
are marked on Figure 4.13. The differences for a total of 824 consecutive frame pairs
were computed. This shows that we can count on RANSAC to choose correctly the
points at infinity and that in a realistic scenario there are enough such points to
enable the three plus one visual odometry.

error between poses is, as before, the logarithm of the Frobenius norm of the differ-

ence between the pose matrices. The algorithms give very similar results, except in

a handful of frames, where pose was computed incorrectly due to a failure to select

an inlier point set in one or the other algorithm.

To further demonstrate the real-world performance, we collected a 2582-frame

video from a mobile robot, where the position of the robot was tracked with a

Topcon tracking total station. In this experiment the hypotheses were generated

with the closed form method. The resulting trajectory is plotted in Figure 4.15(b).

The histogram of differences between poses computed with the five-point method

and our method is shown in Figure 4.14.

114



4.9.2 Structure from Motion Results with a Camera and an

IMU

We investigated using our algorithm to combine visual and inertial data by intro-

ducing the gravity vector in the camera coordinate system as the directional corre-

spondence. For this data collection, the camera was rigidly mounted on a rig with

a Microstrain 3DM-GX1 IMU, and data was synchronously acquired from both de-

vices. We collected an indoor data set and used the visual odometry setup described

above to compare the five-point method with our three-points-plus-gravity method.

There were no visible points at infinity in this data set, and the reference direction

was set to the gravity vector of the IMU in the camera coordinate system. The

camera and IMU rig was moved by hand in all six degrees of freedom. The results

are presented in Figure 4.16. In this data set, RANSAC with the five-point hypoth-

esis generator generally performed similarly to our method, but failed to accurately

recover relative pose for one of the frames, resulting in a jump near the bottom left

of the trajectory, and failure to close the loop.

4.10 Conclusion

In this chapter we presented two efficient algorithms to determine relative pose from

three image point correspondences and a directional correspondence. We showed that

the algorithm based on algebraic geometry yields better numerical performance than

the simpler, closed-form algorithm, but the differences are not significant in most re-

alistic settings. However, we also demonstrated that in certain difficult imaging

configurations, the action matrix method can perform better in single precision im-

plementation, and is therefore recommended for processors with 32-bit floating-point
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arithmetic where extra accuracy is required.

In our comparison with the five-point method, we showed that the more con-

strained three-plus-one method does a better job of estimating rotations than the

five-point method, as expected. We also showed that both the closed-form and

action-matrix implementations are faster than the five-point method, making it even

more attractive for real-time applications.

Another attribute of our algorithm is its non-degeneracy for colinear world points

in general, however, we have identified and confirmed experimentally three degener-

ate configurations: when all world points lie on the horopter [3], and when the three

world points are lie on a line parallel to the direction of motion or the reference

direction.

We also demonstrated that the three-plus-one algorithm can provide accurate and

robust results in real-world settings when used with RANSAC and bundle adjust-

ment, and can be used to perform complete six degree of freedom visual odometry

for outdoor scenes with or without aid from an IMU. We demonstrated that in those

settings, our method exhibits better robustness then the five-point method when

used with RANSAC due to having a smaller minimal data set. We believe that the

real power of this algorithm is that it can be used as a complement to the five-point

algorithm to increase the reliability of visual navigation systems, while improving

speed.

4.11 Closed-form Coefficients

In this section we list the coefficients for the closed-form solution presented in Section

4.4. The coefficients aij are found in equation (4.3.4). The coefficients gi in the
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polynomial (4.4.4) are as follows:

g1 = −a11a23a32 + a13a21a32 − a12a21a33 + a11a22a33 + a23a12a31 − a13a22a31

g2 = −a24a11a32 + a14a21a32 − a12a21a34 + a11a22a34 + a12a24a31 − a14a22a31

g3 = −a23a16a31 + a13a26a31 + a23a12a35 − a13a22a35 − a11a26a33 + a15a22a33

+ a21a16a33 − a25a12a33 − a15a23a32 + a13a25a32 + a11a23a36 − a13a21a36

g4 = −a23a16a32 − a24a16a31 + a13a26a32 + a14a26a31 − a11a23a35 + a12a24a35

+ a13a21a35 − a14a22a35 − a11a26a34 − a12a26a33 + a15a22a34 − a15a21a33

+ a21a16a34 + a22a16a33 − a25a12a34 + a25a11a33 + a15a23a31 − a15a24a32

− a13a25a31 + a14a25a32 + a24a11a36 + a23a12a36 − a13a22a36 − a14a21a36

g5 = −a24a16a32 + a14a26a32 − a24a11a35 + a14a21a35 − a12a26a34 − a15a21a34

+ a22a16a34 + a25a11a34 + a15a24a31 − a14a25a31 + a12a24a36 − a14a22a36

g6 = −a23a16a35 + a13a26a35 − a15a26a33 + a25a16a33 + a15a23a36 − a13a25a36

g7 = −a24a16a35 + a14a26a35 − a15a26a34 + a25a16a34 + a15a24a36 − a14a25a36,

(4.11.1)

where aij come from (4.3.4). The coefficients of the quartic polynomial in c are

h0 = −g2
1 − 2g1g6 − g2

6 + g2
3

h1 = 2g3g2 − 2g4g6 + 2g3g7 − 2g4g1

h2 = −g2
4 + g2

1 + g2
6 + g2

2 + g2
7 − 2g2

3 + 2g1g6 + 2g2g7 + 2g3g5

h3 = 2g4g1 + 2g4g6 + 2g5g2 + 2g5g7 − 2g3g2 − 2g3g7

h4 = g2
4 + g2

5 + g2
3 − 2g3g5.

(4.11.2)

The quartic equation built from the coefficients hi yields the solution for c.
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4.12 Elimination Template Matrix

In this section we list the coefficients of the 21 × 25 elimination matrix described

in Section 4.6.2. The coefficients aij are found in equation (4.3.4). The first fifteen

rows are arranged in five sets of three rows that are the coefficients of equations in

(4.3.2) after multiplication by variables listed in equation (4.6.1). Each row below is

repeated for each i = 1, 2, 3:

[
ai4 ai3 0 0 0 0 ai5 0 ai1 0 0 −ai2 0 0 0 0 0 0 0 0 ai6 0 0 0 0

]
[
0 ai4 ai1 ai3 0 0 0 0 0 ai5 0 ai1 −ai2 0 0 0 ai6 0 0 0 0 0 0 0 0

]
[
0 0 0 0 ai2 ai4 ai1 ai3 0 0 0 0 0 ai5 0 0 0 0 0 ai1 −ai2 0 ai6 0 0

]
[
0 0 0 0 0 0 ai2 ai4 0 ai1 ai3 0 0 0 ai5 0 −ai2 0 0 0 ai1 0 0 ai6 0

]
[
0 0 0 0 0 0 0 0 0 0 0 0 0 ai2 ai1 ai3 0 ai5 ai4 0 0 0 ai1 −ai2 ai6

]

The last six rows of the matrix come from the coefficients of equation (4.3.3)

after multiplication:



1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −1


This matrix can now be used for the reduction and action matrix extraction, as

described in Section 4.6.3.
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Figure 4.13: Estimated camera trajectories for the outdoor data set using our three-
plus-one method (blue) and the five-point algorithm (green). The red squares and
circles indicate places where scale was lost, and trajectory was manually stitched
together. Given the same input, our method jumped twice, while the five-point
method jumped four times. The scale was not reset after stitching, so each piece
of the trajectory has a different scale. Since the translation is up to scale, the
translation units are set arbitrarily. The total length of the track in the real world
was about 430m, of which we were able to travel about 230m before the first break
under challenging imaging conditions. Sample frames are shown in Figure 4.11.
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Figure 4.14: The histogram of relative error in the visual odometry relative pose esti-
mates between the three-plus-one and the five-point algorithms. The error measured
is the Frobenius norm of the difference between the three-plus-one and five-point es-
timated pose matrices. The poses for a total of 824 consecutive frame pairs (see
Figure 4.11) were computed.
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Figure 4.15: (a) Sample images from the 2582-frame mobile robot data set. (b)
Trajectories obtained using visual odometry with the proposed hypothesis generator
and the ground truth collected using a Topcon tracking total station. The three-
plus-one visual odometry (solid red) was manually scaled (with a single overall scale
and a correction factor for scale drift) and aligned with the ground truth (dashed
blue). The results demonstrate that the algorithm performs correctly in outdoor
scenes.
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Figure 4.16: Camera trajectories from a short segment of an indoor dataset where
the reference direction was provided by the IMU. The red solid lines and dashed blue
lines connect the centers of projection determined with our method, the five-point
method, respectively. The coordinate axes attached to each point show the rig’s
relative orientation in space. The motion was approximately a loop, produced by
hand, while exercising all six degrees of freedom, as seen by the orientation of the
coordinate axis. The five point method jumps at one place, and fails to close the
loop. The translation units are arbitrary since the translation was estimated up to
scale, but the total length of the track was about 2m.
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! !

Figure 4.17: A sample frame from the sequence which was used to generate results in
Figure 4.16. The IMU was used to provide directional reference (gravity), as opposed
to the outdoor data where points at infinity were used.
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Figure 4.18: The probability p of catching only inliers in an iteration as a function
of the inlier ratio w is p = 1 − (1 − wn)k for k iterations and n = 3, 5 the size of
minimal data sets. We plot for k = 100 and k = 200 and observe the significant
difference when inliers are less than 50% of the data [23].
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Chapter 5

A Minimal Problem for

Camera-LIDAR Alignment

5.1 Introduction

With a widespread use of range sensors such as LIDAR in computer vision and

robotics, the need to calibrate them with respect the other sensors and the vehicle

becomes essential. In this chapter we will look at a problem of automatically cali-

brating a LIDAR-Camera rig by developing a solution to a minimal problem which

takes as input correspondences between image features and LIDAR samples. A cam-

era provides a dense, color image of the environment, and LIDAR gives a sparse,

but accurate, depth map. Fusion of visual and distance information is challenging

when there is parallax between the two sensors and when distance consists of a single

line scan. Unlike in structured light techniques, the laser is not visible in the image,

hence we have to invent a way to associate features on the line scan with features in

the image if we want to eliminate a manual selection of the features.

This chapter gives a complete solution to this problem, allowing automatic,
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initialization-free calibration of the sensors, assuming only overlapping fields of view.

We demonstrate via a series of synthetic and real experiments that our method, which

is based on minimal solutions and RANSAC [23], is numerically stable and accurate

for realistic calibration scenarios.

This method, first presented at [49] can be used with automatically computed

correspondences between lines in the image and 3D points returned by the LIDAR.

We formulate and solve the minimal problem using these correspondences. We show

that the minimum number of constraints is six, and that there are at most four

distinct solutions. We derive a closed-form solution to the problem using variable

elimination and resultants.

5.2 Related Work

The closest and most cited work to ours is by Zhang and Pless [73] who match a

scanline to a checkerboard. When moving a checkerboard, traditional camera cal-

ibration [6] can extract the normal to the checkerboard with respect to a global

camera reference, while detection of a line in the laser profile enables association of

3D-points with the calibration plane. The algorithm starts with a linear initializa-

tion, suffering under the well known effects of linearization like finding 3x3 matrices

satisfying the data equation and then finding the closest special orthogonal matrix.

Mei and Rives [43] have applied the same principle to catadioptric images but they

exploit the association of a 3D-line (in terms of direction and an offset) to a cali-

bration plane. It is worth noticing that the equation associating the plane normal

to the 3D-line direction is of the form n>Rd = 0, is algebraically the same as ours

after eliminating the translation. However, the authors use, similarly to [73], the

association of points.
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Figure 5.1: A capture rig incorporating four cameras and a Hokuyo LIDAR. Our
method is intended to automatically calibrate such systems.

When a laser system produces a full depth map at once, the only challenge

is associating features. In [70], a similar to [73] association of 3D points to camera

planes is used. In [57] an IMU enables the registration of line scans into a 3D LIDAR

and the relative transformation is found via hand-eye calibration [28]. Scaramuzza

[60] uses the association of hand-clicked points in a full 3D map with points in

catadioptric images.

5.3 Problem Description

Let us formally define the problem of camera-to-LIDAR calibration. We are given a

rig consisting of a calibrated camera (intrinsic parameters are known) and scan line

LIDAR that are rigidly mounted with respect to each other. Our goal is to find the
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Figure 5.2: (a) The correspondence between the line l in the image (coordinate frame
C0) and 3D point produced by the LIDAR (coordinate frameC1). (b) A geometric
interpretation of the correspondence. A 3D plane through the origin with a normal
n in C0 corresponds to a 3D point x in coordinate frame C1.

rigid transformation [R|t] such that given a 3D point x = [x1, x2, x3]
> obtained by

the LIDAR, we can compute the corresponding point y=[y1, y2, y3]
> in the camera’s

coordinate system (and then in the image via the intrinsic calibration) as y = Rx+t.

A single LIDAR datum consists of a depth and angle at which the depth was

sensed. We define the coordinate system for the LIDAR as follows. The origin is

the center of laser sensor rotation, and the plane of laser rotation is the Y-Z plane.

Consequently, we can always express a 3D LIDAR point as x = [0, x2, x3]
>. The

geometry of the correspondence is illustrated in Figure 5.2.

As with any calibration problem from sensor data, we must collect correspon-

dences between the readings of different sensors. In this case, we construct a cali-

bration target containing a single black to white transition (see Figure 5.3), which

we detect as a line segment in the image and a point in the LIDAR’s luminance

output for a single line scan (see Figure 5.4). We discuss feature detection in detail

in Section 5.6.2. A line in the image corresponds to a plane in the world containing

the line and the center of projection of the camera. We now have a correspondence
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between a 3D point in the LIDAR coordinate system and a plane in the camera’s

coordinate system. Thus our constraint is that the LIDAR point, taken into the

camera’s coordinate system, must lie on the corresponding plane. We express this

constraint as

n>(Rx + t) = 0, (5.3.1)

where n is the normal to the plane in the camera coordinate system and x is the

LIDAR point.

Figure 5.3: A single camera frame from the calibration data set showing the calibra-
tion object. The object consists of a black line on a white sheet of paper. We detect
the white-to-black transition looking from the top of the image.
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Figure 5.4: A portion of a LIDAR scan showing a person holding the calibration
target. The points are colored by their intensity returns. The LIDAR’s scan plane
is close to vertical, and its origin is marked by a circle.

5.4 The Polynomial System

In this section we show how to formulate the problem as a set of polynomial equa-

tions. Our original point correspondence constraints have the form

n>i (Rxi + t) = 0 (5.4.1)

for i = 1, . . . , 6, where R ∈ SO(3) and t, ni, xi and t are 3-vectors. Let r1, r2 and r3

be the columns of R. Since we set up the LIDAR coordinate system in such a way

that the first component of each xi is zero, we do not have an explicit dependence
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on r1. By taking the cross product

r1 = r2 × r3, (5.4.2)

we can recover the first column of R from the other two. Since R is orthonormal,

we can add the following constraints

r>3 r3 = 1

r>2 r2 = 1

r>3 r2 = 0.

(5.4.3)

We expand the constraints in equation (5.4.1), to obtain linear equations of the

form [
a>i a′>i

]r2

r3

 + n>i t = 0 (5.4.4)

for i = 1, . . . , 6, where the constant vectors ai and a′i are expressed in terms of input

data in the following way: ai

a′i

 =

nixi2

nixi3

 . (5.4.5)

Our system now has 6 linear, homogenous equations in 9 unknowns corresponding to

the point-to-plane correspondences, and three second order equations constraining

the rotation matrix. In the next two sections we will present a closed-form solution

to this polynomial system.
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5.5 The Closed-form Solution

Since we have linear constraints (5.4.1), and require a six-degree-of-freedom solution,

it is not surprising that we need a minimum of six correspondences. It may seem

surprising at first, however, that this polynomial system can be solved in closed-

form, despite having eight solutions. First, we briefly outline the following steps to

eliminate eight of the variables from the system, solve a univariate polynomial and

then back substitute:

1. Symbolically solve for the translation component t using the first three linear

equations, and substitute into the three remaining linear equations.

2. Symbolically solve three of the six remaining equations for the components of

r2 and substitute into remaining equations.

3. Use the Macaulay resultant (see Chapter 7, §6 in [17]) to symbolically eliminate

two of the three remaining variables from the three remaining equations, and

solve the resulting quartic equation in closed form for r33.

4. Substitute the solutions into the three equations, and use the Sylvester resul-

tant (see Chapter 3, §5 in [17]) of two of them to eliminate one of the two

remaining variables, and solve the resulting quartic equation in closed form.

5. Test the solutions to obtain the one satisfying all equations.

6. Back-substitute for the variables in r2 and t.

The symbolic templates generated by this process will remain the same across all

instances of the problem, so they only need to be computed once, so that solving

an instance of a problem can be accomplished by substitution of the data into the

expressions for the solution.
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We will now describe the solution in detail. Let us first eliminate t from the first

three constraints of the form (5.4.1). These are linear equations, so we can express

t as

t = −


n>1

n>2

n>3


−1 

n>1 Rx1

n>2 Rx2

n>3 Rx3

 . (5.5.1)

In the above system, the components of t are expressed in terms of the remaining

variables r2 and r3. Let us call the coefficients of the remaining variables bij. The

three equations in (5.5.1) then become

ti =

[
b>i b′>i

]r2

r3

 , (5.5.2)

for i = 1, . . . , 3 which is linear in the the components of r2 and r3.

We now substitute for t in the three remaining constraints of the form (5.4.1) for

i = 4, . . . , 6 to get three linear constraints in r2 and r3.
c>4

c>5

c>6

 r2 +


c′>4

c′>5

c′>6

 r3 = 0, (5.5.3)

where cij and c′ij are the coefficients (expressed once again entirely in terms of prob-

lem data)

ci = ai +

[
b1 b2 b3

]
ni

c′i = a′i +

[
b′1 b′2 b′3

]
ni.

(5.5.4)
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Let C and C ′ be the 3×3 matrices of coefficients cij and c′ij. Using the linear system

(5.5.3), we can express r2 as

r2 = −C−1C ′r3. (5.5.5)

We can now eliminate r2 from the system by substituting equation (5.5.5) into the

three second order constraints (5.4.3), arriving (after full expansion) at the system

r2
13 + r2

23 + r2
33 = 1 (5.5.6)

e11r
2
13 + e12r13r23 + e13r

2
23 + e14r13r33 + e15r23r33 + e16r

2
33 = 1 (5.5.7)

e21r
2
13 + e22r13r23 + e23r

2
23 + e24r13r33 + e25r23r33 + e26r

2
33 = 0, (5.5.8)

where the constants eij are computed in closed form in terms of entries of C−1 and

C ′ after the substitution. These coefficients are given explicitly in the supplemental

material1. We can observe that given a set of values that satisfy this system, the

negative values will also satisfy it. Thus, we expect to solve this system via a quartic

polynomial in squares of the variables instead of an eighth degree.

While we cannot directly solve for any of the variables in the system formed

by the last three equations, nor can we reduce the number of variables further by

rearranging the system, we can still obtain a univariate polynomial in r33 by using

the Macaulay resultant of the three equations. This multivariate resultant is the

quotient of the determinants of the numerator matrix (5.5.11) and the denominator

1The MATLAB function, which includes all coefficients, can be obtained from
www.cis.upenn.edu/˜narodits/SolveLidarCalibrationOpt.m.
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2666666666666666666666666664

e11 0 0 0 0 0 e13 0 0 0 0 e16r2
33 − 1 e15r33 e14r33 e12

0 e11 0 0 0 0 e15r33 e13 0 e12 0 0 e16r2
33 − 1 0 e14r33

0 0 e11 0 0 0 e16r2
33 − 1 e15r33 e13 e14r33 e12 0 0 0 0

e14r33 e12 0 e11 0 0 0 0 0 e13 0 0 0 e16r2
33 − 1 e15r33

0 e14r33 e12 0 e11 0 0 0 0 e15r33 e13 0 0 0 e16r2
33 − 1

e16r2
33 − 1 e15r33 e13 e14r33 e12 e11 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 r2
33 − 1 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 r2
33 − 1 0 0

0 0 1 0 0 0 r2
33 − 1 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 r2
33 − 1 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 r2
33 − 1

e31 0 0 0 0 0 e33 0 0 0 0 e36r2
33 e35r33 e34r33 e32

0 e31 0 0 0 0 e35r33 e33 0 e32 0 0 e36r2
33 0 e34r33

e34r33 e32 0 e31 0 0 0 0 0 e33 0 0 0 e36r2
33 e35r33

0 e34r33 e32 0 e31 0 0 0 0 e35r33 e33 0 0 0 e36r2
33

3777777777777777777777777775
(5.5.11)

matrix 
e13 0 e16

0 e13 e11r
2
13 − 1

1 0 1

 (5.5.9)

When we set this resultant to 0, we obtain the following polynomial equation:

g1r
8
33 + g2r

6
33 + g3r

4
33 + g4r

2
33 + g5 = 0. (5.5.10)

The coefficients gi can be computed in closed form using a symbolic mathematics

program, such as Maple [45]. They only have seven thousand terms due to the

sparsity of the matrix (5.5.11), and are explicitly given in the supplemental material.

The equation (5.5.10) can be solved in closed form as a quartic equation in r2
33,

thus giving us up to four real solutions and eight possibilities for r33. We note that

since both [R | t] and [−R | − t] are the solutions to the original system, we only

need to back-substitute the positive, real solutions of (5.5.10), and there are up to

four of them. Once we obtain the corresponding [R | t], simply choose the sign of

the overall solution that makes the determinant of R positive.
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
e13 e12r13 + e15r̃33 e11r

2
13 + e16r̃

2
33 − 1 + e14r13r̃33 0

0 e13 e12r13 + e15r̃33 e11r
2
13 + e16r

2
33 − 1 + e14r13r̃33

1 0 −1 + r2
13 + r̃2

33 0
0 1 0 −1 + r2

13 + r̃2
33


(5.5.12)

While we know that each solution for r33 corresponds to a single solution for the

rest of the variables in the original system, when we substitute the numeric values

r̃33 in the equations (5.5.7), (5.5.8), and (5.5.6), we are faced with a system which

may have false solutions due to numerical error. While it is possible to substitute

the closed-form solutions to the quartic, it is not practical due to the radicals in

the quartic formula. Instead, we compute the Sylvester resultant of (5.5.7) and

(5.5.6) with respect to r23, which is the determinant of the Sylvester matrix (5.5.12).

The resultant is thus a quartic polynomial in r13, and its coefficients are computed

symbolically and are given in the supplemental material.

We set the resultant to 0 and obtain the real solutions r̃13 to the equation. We

substitute the values into (5.5.8) and solve for the remaining variable r23. It now

becomes a simple matter of testing the solutions using equation (5.5.6) to see which

solution indeed lies on the sphere. We repeat this process with the remaining real

solutions to (5.5.10).

Having obtained up to four sets of solutions for r3, it is simple to recover solutions

for r2 from (5.5.3), r1 from (5.4.2), and t from (5.5.1). As we mentioned before, we

must choose the sign of each solution to make the determinant of R positive. We can

find the unique solution to the problem by using a 7th correspondence to disambiguate

among the four solution. To do this, we substitute the n7 and x7 into the constraint

equation (5.4.1) for each candidate R and t and choose the solution with the lowest

absolute residual.
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The steps described above produce a symbolic template for this problem. By this

we mean that given any particular set of six correspondences, we can arrive at the

solutions for R and t only by substituting the data into pre-computed expressions

and solving univariate polynomials (in this case of degree 4).

5.6 Results

In this section we will first establish the correctness of our algorithm and explore

its sensitivity to noise using simulated data, and then perform a real calibration of

a LIDAR-camera rig mounted on a mobile robot for the purpose of coloring the 3D

LIDAR points with pixels from the camera and show the results.

5.6.1 Simulations

Our first experiment establishes the correctness and numerical stability of our sym-

bolic template. We generate, uniformly at random, roll, pitch and yaw of the LI-

DAR with respect to the camera in the range of ±30◦, and translation vectors with

uniformly random components from 0 to 30cm. For each of these ground truth

calibrations, we generate six noise-free correspondences.

We generate these correspondences by simulating a camera looking at a target.

Specifically, we choose two random points in sampling volumes in front of the camera,

one on the left and one on the right. This closely models what happens in the real

system where the 3D line must intersect the LIDAR scan plane which is close to the

vertical plane separating the left and right halves of the image. These two points

define a line which is then intersected with the LIDAR plane to obtain the point x.

The points, along with the camera center, define the plane and its normal n.

The histogram of errors for 105 such configurations is shown in Figure 5.5. The
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Figure 5.5: The histogram of numerical errors for 105 random, noise-free instances
of the problem. The error is defined as the log10 e, where e of the Frobenius norm
of the difference between the ground truth and the computed matrices (see (5.6.1)).
Since the points were not checked for degeneracy (such as collinearity), some failures
are observed. If we consider a failure to be log10 e > −1, then the method fails 1.97%
of the time.

error metric is the the following:

e = min
i

(‖[Rgt | tgt]− [Ri | ti]‖F), (5.6.1)

for i from 1 to the number of solutions, Rgt and tgt comprise the ground truth cali-

bration and ‖�‖F is the Frobenius norm. The figure demonstrates that our solution

correctly solves the calibration problem. The accuracy varies due to the random

nature of correspondences and lack of degeneracy checking during sampling.
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Figure 5.6: Errors in rotation and translation estimation for a simulated rig with a
100mm distance between the camera and LIDAR. Each point shows median error
for 200 random configurations of LIDAR-image correspondences. Each sequence
corresponds to different levels of image noise plotted against LIDAR noise. The
noise values are the standard deviations. The image errors are line translation error
(pix) for the baseline camera described in Section 5.6.1.

We now profile the algorithm with respect to noise in sensor data. We consider

three sources of error: depth uncertainty in the LIDAR points and misestimation of

position and rotation of the corresponding lines in the image, both of which lead to

the 3D point being some distance off the plane through the line and center of the

camera. For the LIDAR depth error, the Hokuyo UTM-30LX specifies the standard

deviation of 30mm for ranges less than 1m. We will study the accuracy for noise

standard deviations of 0mm to 30mm. The image processing accuracy will be in

pixels with respect to a baseline calibrated camera, which we define as a 640× 480

pixel sensor with a 60◦ field of view. While in the real data the errors in line

extraction will depend on the length of the edge segments extracted, we will use the

range of 0 to 4 pixel standard deviations in the simulated results. The results for

different error levels are shown in Figure 5.6, and demonstrate a greater sensitivity

to image noise than depth noise.
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5.6.2 A Real Calibration

The sensor rig for the real-world calibration experiment consists of a calibrated

640 × 480 Flea2 camera with a 77◦ field of view and a Hokuyo UTM-30LX line

scanner, with angular resolution of 0.25 deg (see Figure 5.1).

Images of the calibration target (see Figures 5.3 and 5.4) are captured syn-

chronously by the two sensors at various positions. We detect the target as follows.

For the LIDAR calibration target detection we use the line scan, including inten-

sity, returned from the device in the region of interest for calibration. First, the

derivatives of the intensity vector of the line scan are computed using a difference

of gaussians filter. The peaks of this derivative signal are detected by non-maximal

suppression. This detects both rising and falling edges in the intensity signal. We

then improve the estimate of the edges by fitting a line to all the neighboring 3D

points and projecting the intensity edge sample point onto that line to give us the

final LIDAR feature point xi. The discrete sampling of the angle could cause an

angular error, but since we can control the target’s location during calibration, this

error can be controlled. Even if the LIDAR and camera are further apart as on a

larger robot, a long target can be used which could keep the target close to both

sensors.

The first two steps in image line extraction are radial distortion removal and

edge detection [16]. The edgels are then combined using the Hough transform to

output line segments. We define “linescore” as is a measure of how well the gradient

information in the image fits with the proposed line. We compute this on the line

segments to orient them and prune out ones with poor support. In order to define

linescore, first define Qj as the set of pixels which lie within 1 pixel of the line segment

j to score, and define gi to be the gradient at pixel i, and mj to be the normal to
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the line segment j which we are scoring. linescorej =
∑

i∈Qj
g>i mj measures the

support in the gradient image for each line.

Next, the candidate edges are pruned more using the following heuristics, which

use the fact that our target contains a single black stripe on a white background. The

heuristics look for pairs of line segments which contain a white to black transition

followed by a black to white transition. To do this, we look at the normal direction

combined with the linescore to propose candidate pairings respecting this. For each

candidate pairing we perform a number of tests:

1. Check that the candidate pair’s normals are close to parallel while accounting

for possible perspective distortions.

2. The lines are required to be close together because the target never fills up too

much of the field of view.

3. Check that the ratio of width the height of the rectangle created by the pair

of line segments is appropriate. This is a check that the target has the correct

aspect ratio.

4. Overlap is computed and thresholded to rule out line segments which don’t

occur next to each other.

Once these criteria are passed we take the two endpoints of each line, and record

the normal to the plane ni passing through these points and the camera center.

Thus the vector ni corresponding to the LIDAR point xi become the input for

RANSAC process. We then compute a robust calibration solution using around

400 correspondences in the RANSAC framework. The process chooses the best

calibration hypothesis based on six correspondences which we then iteratively refine

using all of the inliers.
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We tested the quality of our calibration. Our rig is equipped with stereo cameras

that we calibrated using the Camera Calibration Toolbox [6]. We computed the

error in the LIDAR-camera calibration by observing that we can compute the left-to-

right camera calibration by combining the left camera and right camera to LIDAR

calibrations. We define an error metric as follows. Let us denote a calibration

transformation Pq =
[

Rq tq

0 0 0 1

]
. We can define the error matrix

Perr = PlrPrhP
−1
lh ,

where Plr is the left-to-right calibration computed using the calibration toolbox, and

Prh and Plh are the left camera and right camera to Hokuyo calibrations, respectively,

computed with our method. If both of our calibrations were accurate, Rerr would be

close to identity and ‖terr‖2 would be close to 0. The real rotation error was 0.26◦,

and the translation error was 1.9mm (the distance between the LIDAR and each

camera was approximately 140mm).

This calibration was used to color the LIDAR points with the corresponding

pixels from the camera. Our system automatically acquired the images and registered

LIDAR scans using visual odometry. The registered LIDAR point cloud is shown in

Figure 5.7. The same point cloud colored by the camera image pixels is shown in

Figure 5.8.

5.7 Conclusion

We overcome the difficulty of calibrating LIDAR-camera rigs by introducing a new

algorithm based on the minimal solution to the calibration from line to 3D point
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Figure 5.7: A sample LIDAR scan acquired by the mobile robot colored by height.

correspondences, used in a robust framework and without initialization. Using au-

tomatic feature detection described, the algorithm can be used to automatically

calibrate a variety of sensor platforms. Our experiments with simulated and real

data indicate that this method is both correct and practical.
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Figure 5.8: A LIDAR scan colored using camera pixels.
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Chapter 6

Conclusions

In this dissertation we explored the methods of algebraic geometry as they pertain

to solving systems of polynomial equations in the context of geometric computer

vision. The work on the solver optimization presented in Chapter 3 opens the door

to further study of algebraic properties of polynomial system coefficient matrices in

search of faster and more numerically stable representations. While we only proved

some properties that rely on linear-algebraic properties of the matrices, exploiting

algebraic-geometric structure and sparsity are interesting opportunities for future

work. While applications presented are limited to computer vision, the methods

developed have potential in any field where a problem can be formulated as a poly-

nomial system with a static algebraic structure.

The three-plus-one visual odometry algorithm in Chapter 4 constitutes an im-

provement on the conventional techniques both in terms of accuracy and computa-

tional efficiency. The formulation of the minimal problem makes it easy to integrate

it with existing systems using cameras and/or inertial sensors for navigation. The

domains of application and the extent to which the three-plus-one improves systems
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employing different combinations of sensors and different visual navigation tech-

niques (such as Kalman filtering, local bundle adjustment and a variety of other

SLAM techniques) are exciting areas of research as well.

The LIDAR-camera calibration algorithm from Chapter 5 is a ready-to-use solu-

tion to calibration of commonly used robotics platforms. The ease of implementation

(due to closed form) and ability to operate without initialization make this algorithm

and the system described in the chapter a complete solution for calibrating this type

of a system. In addition, the minimal problem itself (six 3D-plane-to-3D-point cor-

respondence problem) may find applications elsewhere, such as in motion recovery

given point to plane correspondences derived from other sensors.
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[13] M. Byröd, K. Josephson, and K. Åström. Improving numerical accuracy of

grobner basis polynomial equation solver. Proc. Int. Conf. on Computer Vision,

2007.
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of pure and applied algebra, pages 1–29, Oct 1999.

[23] M. Fischler and R. Bolles. Random sample consensus. Communications of the

ACM, Jan 1981.

[24] F. Fraundorfer, P. Tanskanen, and M. Pollefeys. A minimal case solution to the

calibrated relative pose problem for the case of two known orientation angles.

Proc. Eleventh European Conference on Computer Vision, pages 269–282, Sept.

2010.

148



[25] M. George and S. Sukkarieh. Inertial navigation aided by monocular camera

observations of unknown features. Proc. IEEE Int. Conf. on Robotics and Au-

tomation, pages 3558–3564, 2007.

[26] R. Hartley and P. Sturm. Triangulation. Computer Vision and Image Under-

standing, Jan 1997.

[27] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-

bridge University Press, 2004.

[28] R. Horaud and F. Dornaika. Hand-eye calibration. Intl. J. Robot. Res., 1995.

[29] T. Huang and O. Faugeras. Some properties of the E matrix in two-view motion

estimation. IEEE Trans. Pattern Analysis and Machine Intelligence, Jan 1989.

[30] E. Jones, A. Vedaldi, and S. Soatto. Inertial structure from motion with auto-

calibration. In Proc. of the IEEE Int. Conf. on Computer Vision Workshop on

Dynamical Vision, Rio de Janeiro, Brazil, 2007.

[31] M. Kalantari, A. Hashemi, F. Jung, and J. Guedon. A new solution to the

relative orientation problem using only 3 points and the vertical direction. arXiv,

cs.CV, May 2009.

[32] K. Konolige, M. Agrawal, and J. Sola. Large-scale visual odometry for rough

terrain. Robotics Research, pages 201–212, 2011.

[33] J. Kosecka and W. Zhang. Video compass. Proc. Seventh European Conference

on Computer Vision, pages 476–490, Copenhagen, Denmark 2002.

[34] E. Kruppa. Zur Ermittlung eines Objektes aus zwei Perspektiven mit in-

nerer Orientierung. Sitz.-Ber. Akad.Wiss.,Wien, Math. Naturw. Kl., Abt. IIa.,

122:1939–1948, 1913.

149



[35] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic generator of minimal prob-

lem solvers. Proc. Tenth European Conference on Computer Vision, Jan 2008.

[36] Z. Kukelova, M. Byröd, K. Josephson, and T. Pajdla. Fast and robust numerical

solutions to minimal problems for cameras with radial distortion. Computer

Vision and Image Understanding, Jan 2008.

[37] Z. Kukelova and T. Pajdla. A minimal solution to the autocalibration of radial

distortion. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis,

MN, June 18-23 2007.

[38] Z Kukelova and T Pajdla. A minimal solution to the autocalibration of radial

distortion. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis,

MN, June 18-23 2007.

[39] H. Li and R. Hartley. Five-point motion estimation made easy. Proc. Int. Conf.

on Pattern Recognition, 2006.

[40] J. Lobo and J. Dias. Vision and inertial sensor cooperation using gravity as

a vertical reference. IEEE Trans. Pattern Analysis and Machine Intelligence,

25(12):1597–1608, 2003.

[41] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, Jan 2004.

[42] A. Makadia and K. Daniilidis. Correspondenceless ego-motion estimation using

an IMU. In Proc. IEEE Int. Conf. on Robotics and Automation, 2005.

[43] C. Mei and P. Rives. Calibration between a central catadioptric camera and a

laser range finder for robotic applications. In Proc. IEEE Int. Conf. on Robotics

and Automation, pages 532 –537, may. 2006.

150



[44] C. Meyer. Matrix analysis and applied linear algebra. SIAM, Jan 2000.

[45] M Minimair. MR: Macaulay resultant package for Maple. ACM SIGPLAN,

39(4):26–29, 2004.

[46] AI Mourikis and SI Roumeliotis. A multi-state constraint Kalman filter for

vision-aided inertial navigation. Proc. IEEE Int. Conf. on Robotics and Au-

tomation, pages 3565–3572, 2007.

[47] A.I. Mourikis, N. Trawny, S.I. Roumeliotis, A. Johnson, and L. Matthies. Vi-

sion aided inertial navigation for precise planetary landing: Analysis and exper-

iments. Proc. Robotics Systems and Science Conference, 2007.

[48] O. Naroditsky and K. Daniilidis. Optimizing polynomial solvers for minimal

geometry problems. Proc. Int. Conf. on Computer Vision, pages 975–982, 2011.

[49] O. Naroditsky, A. Patterson, and K. Daniilidis. Automatic alignment of a

camera with a line scan LIDAR system. Proc. IEEE Int. Conf. on Robotics and

Automation, pages 3429–3434, 2011.

[50] O. Naroditsky, X. Zhou, J. Gallier, S. Roumeliotis, and K. Daniilidis. Two

efficient solutions for visual odometry using directional correspondence. IEEE

Trans. Pattern Analysis and Machine Intelligence, (99):1–1, 2011.

[51] O. Naroditsky, Z. Zhu, A. Das, T. Oskiper, S. Samarasekera, and R. Kumar.

Videotrek: A vision system for a tag-along robot. IEEE Conf. Computer Vision

and Pattern Recognition, Miami, FL, June 20-25 2009.

[52] D. Nister. An efficient solution to the five-point relative pose problem. IEEE

Conf. Computer Vision and Pattern Recognition, Wisconsin, June 16-22 2003.

151



[53] D. Nister. Preemptive RANSAC for live structure and motion estimation. IEEE

Conf. Computer Vision and Pattern Recognition, pages 199–206 vol.1, Wiscon-

sin, June 16-22 2003.

[54] D. Nister. An efficient solution to the five-point relative pose problem. IEEE

Trans. Pattern Analysis and Machine Intelligence, Jan 2004.

[55] D. Nister. Preemptive RANSAC for live structure and motion estimation. Ma-

chine Vision and Applications, 16(5):321–329, 2005.

[56] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. IEEE Conf. Com-

puter Vision and Pattern Recognition, 1:I–652 – I–659 Vol.1, Washington, DC,

Jun 29 - Jul 1 2004.

[57] P. Nunez, P. Drews, R. Rocha, and J. Dias. Data fusion calibration for a 3D

laser range finder and a camera using inertial data. European Conference on

Mobile Robots ’09, page 9, 2009.

[58] G. Qian, R. Chellappa, and Q. Zheng. Robust structure from motion estimation

using inertial data. Journal of the Optical Society of America A, 18(12):2982–

2997, 2001.

[59] S.I. Roumeliotis, A.E. Johnson, and J.F. Montgomery. Augmenting inertial

navigation with image-based motion estimation. In Proc. IEEE Int. Conf. on

Robotics and Automation, volume 4, pages 4326–4333. Citeseer, 2002.

[60] D. Scaramuzza, A. Harati, and R. Siegwart. Extrinsic self calibration of a

camera and a 3D laser range finder from natural scenes. In Proc. IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, pages 4164–4169, 2007.

152



[61] W. Scharlau. Who is Alexander Grothendieck. Notices of the American Math-

ematical Society, ”55”(”8”):”930–941”, ”2008”.

[62] B. Siciliano and O. Khatib. Springer handbook of robotics. Springer, Jan 2008.
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